Well-Posedness for the Fifth Order KdV Equation

被引:11
|
作者
Kato, Takamori [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2012年 / 55卷 / 01期
关键词
Fifth order KdV equation; Well-posedness; Cauchy problem; Fourier restriction norm method; Low regula; CAUCHY-PROBLEM; BENJAMIN-ONO;
D O I
10.1619/fesi.55.17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem of the fifth order KdV equation with low regularity data. We cannot apply the iteration argument to this problem when initial data. is given in the Sobolev space H-s for any s epsilon R. So we give initial data in H-s,H- (a) = H-s boolean AND H-a with a <= min {s, 0}. Then we recover more derivatives of the nonlinear term to be able to use the iteration method. Therefore we obtain the local well-posedness in H-s,H- a in the case s >= max{-1/4, -2a - 2}, -3/2 < a <= -1/4 and (s, a) not equal (-1/4, -7/8). Moreover, we obtain the ill-posedness in some sense when s < max{-1/4, -2a - 2}, a <= -3/2 or a > -1/4. The main tool is a variant of the Fourier restriction norm method, which is based on Kishimoto's work (2009).
引用
下载
收藏
页码:17 / 53
页数:37
相关论文
共 50 条
  • [21] GLOBAL WELL-POSEDNESS FOR A FIFTH-ORDER SHALLOW WATER EQUATION ON THE CIRCLE
    Li Yongsheng
    Yang Xingyu
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1303 - 1317
  • [22] Global well-posedness of initial-boundary value problem of fifth-order KdV equation posed on finite interval
    Zhao, Xiangqing
    Wang, Chengqiang
    Bao, Jifeng
    OPEN MATHEMATICS, 2023, 21 (01):
  • [23] WELL-POSEDNESS FOR A FAMILY OF PERTURBATIONS OF THE KdV EQUATION IN PERIODIC SOBOLEV SPACES OF NEGATIVE ORDER
    Paredes, Xavier Carvajal
    Pastran, Ricardo A.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (06)
  • [24] On the well-posedness of the periodic KdV equation in high regularity classes
    Kappeler, Thomas
    Poeschel, Juergen
    HAMILTONIAN DYNAMICAL SYSTEMS AND APPLICATIONS, 2008, : 431 - +
  • [25] Local well-posedness for a fractional KdV-type equation
    Roger P. de Moura
    Ailton C. Nascimento
    Gleison N. Santos
    Journal of Evolution Equations, 2022, 22
  • [26] Cancellation properties and unconditional well-posedness for the fifth order KdV type equations with periodic boundary condition
    Kato, Takamori
    Tsugawa, Kotaro
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 5 (03):
  • [27] Well-Posedness for the ZK Equation in a Cylinder and on the Background of a KdV Soliton
    Linares, Felipe
    Pastor, Ademir
    Saut, Jean-Claude
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) : 1674 - 1689
  • [28] Local well-posedness of a nonlinear KdV-type equation
    Israwi, Samer
    Talhouk, Raafat
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (23-24) : 895 - 899
  • [29] ON GLOBAL WELL-POSEDNESS OF THE MODIFIED KDV EQUATION IN MODULATION SPACES
    Oh, Tadahiro
    Wang, Yuzhao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (06) : 2971 - 2992
  • [30] LOCAL WELL-POSEDNESS OF THE FIFTH-ORDER KDV-TYPE EQUATIONS ON THE HALF-LINE
    Cavalcante, Marcio
    Kwak, Chulkwang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2607 - 2661