Flexible quasi-beta regression models for continuous bounded data

被引:10
|
作者
Bonat, Wagner H. [1 ]
Petterle, Ricardo R. [2 ]
Hinde, John [3 ]
Demetrio, Clarice G. B. [4 ]
机构
[1] Univ Fed Parana, Dept Stat, Lab Stat & Geoinformat, Curitiba, Parana, Brazil
[2] Univ Fed Parana, Med Sch, Sect Hlth Sci, Curitiba, Parana, Brazil
[3] Natl Univ Ireland Galway, Sch Math Stat & Appl Math, Galway, Ireland
[4] Univ Sao Paulo, Dept Ciencias Exatas, Escola Super Agr Luiz de Queiroz, Piracicaba, Brazil
关键词
bounded data; estimating functions; beta distribution; simplex distribution; regression models; INFLUENCE DIAGNOSTICS; MARGINAL MODELS; DISPERSION; RATES;
D O I
10.1177/1471082X18790847
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a flexible class of regression models for continuous bounded data based on second-moment assumptions. The mean structure is modelled by means of a link function and a linear predictor, while the mean and variance relationship has the form phi mu p(1-mu)p, where mu, phi and p are the mean, dispersion and power parameters respectively. The models are fitted by using an estimating function approach where the quasi-score and Pearson estimating functions are employed for the estimation of the regression and dispersion parameters respectively. The flexible quasi-beta regression model can automatically adapt to the underlying bounded data distribution by the estimation of the power parameter. Furthermore, the model can easily handle data with exact zeroes and ones in a unified way and has the Bernoulli mean and variance relationship as a limiting case. The computational implementation of the proposed model is fast, relying on a simple Newton scoring algorithm. Simulation studies, using datasets generated from simplex and beta regression models show that the estimating function estimators are unbiased and consistent for the regression coefficients. We illustrate the flexibility of the quasi-beta regression model to deal with bounded data with two examples. We provide an R implementation and the datasets as supplementary materials.
引用
收藏
页码:617 / 633
页数:17
相关论文
共 50 条
  • [1] Multivariate quasi-beta regression models for continuous bounded data
    Petterle, Ricardo R.
    Bonat, Wagner H.
    Scarpin, Cassius T.
    Jonasson, Thaisa
    Borba, Victoria Z. C.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2021, 17 (01): : 39 - 53
  • [2] Flexible quasi-beta prime regression models for dependent continuous positive data
    De Freitas, Joao Victor B.
    Nobre, Juvencio S.
    Azevedo, Caio L. N.
    [J]. STATISTICS AND ITS INTERFACE, 2024, 17 (04) : 715 - 731
  • [3] Quasi-beta Longitudinal Regression Model Applied to Water Quality Index Data
    Ricardo Rasmussen Petterle
    Wagner Hugo Bonat
    Cassius Tadeu Scarpin
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2019, 24 : 346 - 368
  • [4] Quasi-beta Longitudinal Regression Model Applied to Water Quality Index Data
    Petterle, Ricardo Rasmussen
    Bonat, Wagner Hugo
    Scarpin, Cassius Tadeu
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2019, 24 (02) : 346 - 368
  • [5] Flexible Tweedie regression models for continuous data
    Bonat, Wagner Hugo
    Kokonendji, Celestin C.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (11) : 2138 - 2152
  • [6] Unit gamma mixed regression models for continuous bounded data
    Petterle, Ricardo R.
    Taconeli, Cesar A.
    da Silva, Jose L. P.
    da Silva, Guilherme P.
    Laureano, Henrique A.
    Bonat, Wagner H.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (06) : 1011 - 1029
  • [7] Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution
    Verkuilen, Jay
    Smithson, Michael
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2012, 37 (01) : 82 - 113
  • [8] Complementary Beta Regression Model for Fitting Bounded Data
    André F. B. Menezes
    Marcelo Bourguignon
    Josmar Mazucheli
    [J]. Journal of Statistical Theory and Practice, 2022, 16
  • [9] Complementary Beta Regression Model for Fitting Bounded Data
    Menezes, Andre F. B.
    Bourguignon, Marcelo
    Mazucheli, Josmar
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2022, 16 (02)
  • [10] Flexible (panel) regression models for bivariate count-continuous data with an insurance application
    Lu, Yang
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2019, 182 (04) : 1503 - 1521