Flexible Tweedie regression models for continuous data

被引:42
|
作者
Bonat, Wagner Hugo [1 ]
Kokonendji, Celestin C. [2 ]
机构
[1] Univ Fed Parana, Dept Stat, Ctr Politecn S-N, BR-80060000 Curitiba, Parana, Brazil
[2] Univ Bourgogne Franche Comte, Lab Math Besancon, Besancon, France
关键词
Semi-continuous data; quasi-likelihood; pseudo-likelihood; Tweedie distribution; maximum likelihood; simulation; 62J12; 62F10; 62E17; 62J20; 62J99; DISPERSION;
D O I
10.1080/00949655.2017.1318876
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Tweedie regression models (TRMs) provide a flexible family of distributions to deal with non-negative right-skewed data and can handle continuous data with probability mass at zero. Estimation and inference of TRMs based on the maximum likelihood (ML) method are challenged by the presence of an infinity sum in the probability function and non-trivial restrictions on the power parameter space. In this paper, we propose two approaches for fitting TRMs, namely quasi-likelihood (QML) and pseudo-likelihood (PML). We discuss their asymptotic properties and perform simulation studies to compare our methods with the ML method. We show that the QML method provides asymptotically efficient estimation for regression parameters. Simulation studies showed that the QML and PML approaches present estimates, standard errors and coverage rates similar to the ML method. Furthermore, the second-moment assumptions required by the QML and PML methods enable us to extend the TRMs to the class of quasi-TRMs in Wedderburn's style. It allows to eliminate the non-trivial restriction on the power parameter space, and thus provides a flexible regression model to deal with continuous data. We provide an R implementation and illustrate the application of TRMs using three data sets.
引用
收藏
页码:2138 / 2152
页数:15
相关论文
共 50 条
  • [1] Geometric Tweedie regression models for continuous and semicontinuous data with variation phenomenon
    Abid, Rahma
    Kokonendji, Celestin C.
    Masmoudi, Afif
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2020, 104 (01) : 33 - 58
  • [2] Geometric Tweedie regression models for continuous and semicontinuous data with variation phenomenon
    Rahma Abid
    Célestin C. Kokonendji
    Afif Masmoudi
    [J]. AStA Advances in Statistical Analysis, 2020, 104 : 33 - 58
  • [3] Tweedie regression models and its geometric sums for (semi-)continuous data
    Kokonendji, Celestin C.
    Bonat, Wagner H.
    Abid, Rahma
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (01)
  • [4] Flexible quasi-beta regression models for continuous bounded data
    Bonat, Wagner H.
    Petterle, Ricardo R.
    Hinde, John
    Demetrio, Clarice G. B.
    [J]. STATISTICAL MODELLING, 2019, 19 (06) : 617 - 633
  • [5] Extended Poisson-Tweedie: Properties and regression models for count data
    Bonat, Wagner H.
    Jorgensen, Bent
    Kokonendji, Celestin C.
    Hinde, John
    Demetrio, Clarice G. B.
    [J]. STATISTICAL MODELLING, 2018, 18 (01) : 24 - 49
  • [6] Double Poisson-Tweedie Regression Models
    Petted, Ricardo R.
    Bonat, Wagner H.
    Kokonendji, Celestin C.
    Seganfredo, Juliane C.
    Moraes, Atamai
    da Silva, Monica C.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2019, 15 (01):
  • [7] Flexible quasi-beta prime regression models for dependent continuous positive data
    De Freitas, Joao Victor B.
    Nobre, Juvencio S.
    Azevedo, Caio L. N.
    [J]. STATISTICS AND ITS INTERFACE, 2024, 17 (04) : 715 - 731
  • [8] Flexible (panel) regression models for bivariate count-continuous data with an insurance application
    Lu, Yang
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2019, 182 (04) : 1503 - 1521
  • [9] Flexible Bivariate Count Data Regression Models
    Gurmu, Shiferaw
    Elder, John
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2012, 30 (02) : 265 - 274
  • [10] Discriminating between and within (semi)continuous classes of both Tweedie and geometric Tweedie models
    Rahma, Abid
    Kokonendji, Celestin C.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (04) : 794 - 812