Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution

被引:90
|
作者
Verkuilen, Jay [1 ]
Smithson, Michael [2 ]
机构
[1] CUNY, Grad Ctr, New York, NY 10016 USA
[2] Australian Natl Univ, Dept Psychol, Canberra, ACT 0200, Australia
关键词
beta distribution; general linear model; mixed model; mixture model; JUDGMENT;
D O I
10.3102/1076998610396895
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite poorly modeled by the normal distribution. The authors extend the beta-distributed generalized linear model (GLM) proposed in Smithson and Verkuilen (2006) to discrete and continuous mixtures of beta distributions, which enables modeling dependent data structures commonly found in real settings. The authors discuss estimation using both deterministic marginal maximum likelihood and stochastic Markov chain Monte Carlo (MCMC) methods. The results are illustrated using three data sets from cognitive psychology experiments.
引用
收藏
页码:82 / 113
页数:32
相关论文
共 50 条
  • [1] A command for fitting mixture regression models for bounded dependent variables using the beta distribution
    Gray, Laura A.
    Alava, Monica Hernandez
    [J]. STATA JOURNAL, 2018, 18 (01): : 51 - 75
  • [2] Unit gamma mixed regression models for continuous bounded data
    Petterle, Ricardo R.
    Taconeli, Cesar A.
    da Silva, Jose L. P.
    da Silva, Guilherme P.
    Laureano, Henrique A.
    Bonat, Wagner H.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (06) : 1011 - 1029
  • [3] Multivariate quasi-beta regression models for continuous bounded data
    Petterle, Ricardo R.
    Bonat, Wagner H.
    Scarpin, Cassius T.
    Jonasson, Thaisa
    Borba, Victoria Z. C.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2021, 17 (01): : 39 - 53
  • [4] Flexible quasi-beta regression models for continuous bounded data
    Bonat, Wagner H.
    Petterle, Ricardo R.
    Hinde, John
    Demetrio, Clarice G. B.
    [J]. STATISTICAL MODELLING, 2019, 19 (06) : 617 - 633
  • [5] A flexible approach to finite mixture regression models for multivariate mixed responses
    Alfo, Marco
    Rocchetti, Irene
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (07) : 1754 - 1758
  • [6] Regression models for mixed discrete and continuous responses with potentially missing values
    Fitzmaurice, GM
    Laird, NM
    [J]. BIOMETRICS, 1997, 53 (01) : 110 - 122
  • [7] Mixed-effects beta regression for modeling continuous bounded outcome scores using NONMEM when data are not on the boundaries
    Xu, Xu Steven
    Samtani, Mahesh N.
    Dunne, Adrian
    Nandy, Partha
    Vermeulen, An
    De Ridder, Filip
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2013, 40 (04) : 537 - 544
  • [8] Mixed-effects beta regression for modeling continuous bounded outcome scores using NONMEM when data are not on the boundaries
    Xu Steven Xu
    Mahesh N. Samtani
    Adrian Dunne
    Partha Nandy
    An Vermeulen
    Filip De Ridder
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40 : 537 - 544
  • [9] A Beta Unfolding Model for Continuous Bounded Responses
    Noel Y.
    [J]. Psychometrika, 2014, 79 (4) : 647 - 674
  • [10] Modeling Continuous Bounded Outcome Scores Using Beta Regression with NONMEM® VII
    Samtani, Mahesh N.
    Xu, Xu Steven
    Dunne, Adrian
    Nandy, Partha
    Vermeulen, An
    De Ridder, Filip
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2013, 40 : S66 - S67