Oscillation criteria for a certain class of fractional order integro-differential equations

被引:4
|
作者
Asliyuce, Serkan [1 ,2 ]
Guvenilir, A. Feza [2 ]
Zafer, Agacik [3 ,4 ]
机构
[1] Amasya Univ, Fac Sci & Arts, Dept Math, TR-05100 Amasya, Turkey
[2] Ankara Univ, Dept Math, Fac Sci, TR-06100 Ankara, Turkey
[3] Amer Univ Middle East, Dept Math & Stat, Coll Engn & Technol, Kuwait, Kuwait
[4] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey
来源
关键词
fractional integro-differential equations; oscillation; Riemann-Liouville fractional operators; Caputo fractional derivative; DIFFERENTIAL-EQUATIONS; EXISTENCE; STABILITY;
D O I
10.15672/HJMS.20164518619
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we shall give some new results about the oscillatory behavior of nonlinear fractional order integro-differential equations with forcing term v(t) of form D(a)(alpha)x(t) = v(t) - integral(t)(a) K(t,s)F(s,x(s))ds, 0<alpha<1, lim(t -> a+) J(a)(1-alpha) x(t) = b(1) , where v, K and F are continuous functions, b(1) is an element of R, and D-a(alpha) and J(a)(1-alpha) denote the Riemann-Liouville fractional order differential and integral operators respectively.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 50 条
  • [41] Global attractivity for fractional order delay partial integro-differential equations
    Saïd Abbas
    Dumitru Baleanu
    Mouffak Benchohra
    [J]. Advances in Difference Equations, 2012
  • [42] Numerical Solutions of Fourth-Order Fractional Integro-Differential Equations
    Yildirim, Ahmet
    Sezer, Sefa Anil
    Kaplan, Yasemin
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (12): : 1027 - 1032
  • [43] ON ONE CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS
    IANUSHAUSKAS, AI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1989, 305 (03): : 545 - 547
  • [44] A CLASS OF SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS
    ISAKHANOV, RS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1960, 132 (02): : 264 - 267
  • [45] ON A NEW CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS
    Kurth, Patrick
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2014, 26 (04) : 497 - 526
  • [46] ON STABILITY OF A CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS
    Pham Huu Anh Ngoc
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (02): : 407 - 425
  • [47] Ulam–Hyers–Rassias Stability for a Class of Fractional Integro-Differential Equations
    E. Capelas de Oliveira
    J. Vanterler da C. Sousa
    [J]. Results in Mathematics, 2018, 73
  • [48] INTEGRAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL ORDER INTEGRO-DIFFERENTIAL EQUATIONS
    Liu, Zhenhai
    Han, Jiangfeng
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (04): : 535 - 547
  • [49] Global attractivity for fractional order delay partial integro-differential equations
    Abbas, Said
    Baleanu, Dumitru
    Benchohra, Mouffak
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [50] A new numerical method for fractional order Volterra integro-differential equations
    Rajagopal, N.
    Balaji, S.
    Seethalakshmi, R.
    Balaji, V. S.
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2020, 11 (01) : 171 - 177