Ulam–Hyers–Rassias Stability for a Class of Fractional Integro-Differential Equations

被引:0
|
作者
E. Capelas de Oliveira
J. Vanterler da C. Sousa
机构
[1] Imecc-Unicamp,Department of Applied Mathematics
来源
Results in Mathematics | 2018年 / 73卷
关键词
Fractional integro-differential equations; Ulam–Hyers stability; Ulam–Hyers–Rassias stability; semi-Ulam–Hyers–Rassias stability; Banach fixed-point theorem; -Hilfer fractional derivative; 26A33; 34A08; 34K20; 37C25;
D O I
暂无
中图分类号
学科分类号
摘要
By means of the recent ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Hilfer fractional derivative and of the Banach fixed-point theorem, we investigate stabilities of Ulam–Hyers, Ulam–Hyers–Rassias and semi-Ulam–Hyers–Rassias on closed intervals [a, b] and [a,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[a,\infty )$$\end{document} for a particular class of fractional integro-differential equations.
引用
收藏
相关论文
共 50 条
  • [1] Ulam-Hyers-Rassias Stability for a Class of Fractional Integro-Differential Equations
    Capelas de Oliveira, E.
    Sousa, J. Vanterler da C.
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (03)
  • [2] Hyers-Ulam and Hyers-Ulam-Rassias Stability for a Class of Integro-Differential Equations
    Castro, L. P.
    Simoes, A. M.
    [J]. MATHEMATICAL METHODS IN ENGINEERING: THEORETICAL ASPECTS, 2019, 23 : 81 - 94
  • [3] Hyers-Ulam-Rassias-Kummer stability of the fractional integro-differential equations
    Eidinejad, Zahra
    Saadati, Reza
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (07) : 6536 - 6550
  • [4] Stability of Ulam–Hyers and Ulam–Hyers–Rassias for a class of fractional differential equations
    Qun Dai
    Ruimei Gao
    Zhe Li
    Changjia Wang
    [J]. Advances in Difference Equations, 2020
  • [5] Stability of Ulam-Hyers and Ulam-Hyers-Rassias for a class of fractional differential equations
    Dai, Qun
    Gao, Ruimei
    Li, Zhe
    Wang, Changjia
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [6] Different Types of Hyers-Ulam-Rassias Stabilities for a Class of Integro-Differential Equations
    Castro, L. P.
    Simoes, A. M.
    [J]. FILOMAT, 2017, 31 (17) : 5379 - 5390
  • [7] HYERS-ULAM-RASSIAS STABILITY OF A NONLINEAR STOCHASTIC FRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATION
    Chaharpashlou, Reza
    Lopes, Antonio M.
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2799 - 2808
  • [8] Existence and Ulam-Hyers Stability Results for a Class of Fractional Integro-Differential Equations Involving Nonlocal Fractional Integro-Differential Boundary Conditions
    Haddouchi, Faouzi
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [9] HYERS-ULAM-RASSIAS STABILITY OF κ-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Yao, Hui
    Jin, Wenqi
    Dong, Qixiang
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2903 - 2921
  • [10] Ulam-Hyers-Rassias stability for generalized fractional differential equations
    Boucenna, Djalal
    Ben Makhlouf, Abdellatif
    El-hady, El-sayed
    Hammami, Mohamed Ali
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10267 - 10280