A fundamental differential system of Riemannian geometry

被引:5
|
作者
Albuquerque, Rui [1 ,2 ]
机构
[1] Univ Evora, Dept Matemat, Rua Romao Ramalho, P-6717000 Evora, Portugal
[2] UE, CIMA, Rua Romao Ramalho, P-6717000 Evora, Portugal
关键词
Tangent sphere bundle; Riemannian manifold; exterior differential system; hypersurface; Euler-Lagrange system; WEIGHTED METRICS; SPHERE;
D O I
10.4171/RMI/1118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discover a fundamental exterior differential system of Riemannian geometry; indeed, an intrinsic and invariant global system of differential forms of degree n associated to any given oriented Riemannian manifold M of dimension n + 1. The framework is that of the tangent sphere bundle of M. We generalise to a Riemannian setting some results from the theory of hypersurfaces in flat Euclidean space. We give new applications and examples of the associated Euler-Lagrange differential systems.
引用
收藏
页码:2221 / 2250
页数:30
相关论文
共 50 条