A fundamental differential system of Riemannian geometry

被引:5
|
作者
Albuquerque, Rui [1 ,2 ]
机构
[1] Univ Evora, Dept Matemat, Rua Romao Ramalho, P-6717000 Evora, Portugal
[2] UE, CIMA, Rua Romao Ramalho, P-6717000 Evora, Portugal
关键词
Tangent sphere bundle; Riemannian manifold; exterior differential system; hypersurface; Euler-Lagrange system; WEIGHTED METRICS; SPHERE;
D O I
10.4171/RMI/1118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discover a fundamental exterior differential system of Riemannian geometry; indeed, an intrinsic and invariant global system of differential forms of degree n associated to any given oriented Riemannian manifold M of dimension n + 1. The framework is that of the tangent sphere bundle of M. We generalise to a Riemannian setting some results from the theory of hypersurfaces in flat Euclidean space. We give new applications and examples of the associated Euler-Lagrange differential systems.
引用
收藏
页码:2221 / 2250
页数:30
相关论文
共 50 条
  • [31] Aggregation of Multi-Agent System on Manifolds With Riemannian Geometry
    Tang, Lunxiao
    Yu, Tao
    Luo, Maokang
    [J]. IEEE ACCESS, 2023, 11 : 55456 - 55464
  • [32] APPLICATION OF RIEMANNIAN GEOMETRY TO THE THERMODYNAMICS OF A SIMPLE FLUCTUATING MAGNETIC SYSTEM
    RUPPEINER, G
    [J]. PHYSICAL REVIEW A, 1981, 24 (01): : 488 - 492
  • [33] Another approach to the fundamental theorem of Riemannian geometry in R3, by way of rotation fields
    Ciarlet, Philippe G.
    Gratie, Liliana
    Iosifescu, Oana
    Mardare, Cristinel
    Vallee, Claude
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (03): : 237 - 252
  • [34] Frame bundle of Riemannian path space and Ricci tensor in adapted differential geometry
    Cruzeiro, AB
    Malliavin, P
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 177 (01) : 219 - 253
  • [35] Burgers' Equations in the Riemannian Geometry Associated with First-Order Differential Equations
    Bayrakdar, Z. Ok
    Bayrakdar, T.
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [36] A RESULT IN HILBERTIAN GEOMETRY WITH APPLICATIONS TO RIEMANNIAN GEOMETRY
    MEYER, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 295 (07): : 467 - 469
  • [37] FOLIATIONS, RIEMANNIAN GEOMETRY AND SYMPLECTIC-GEOMETRY
    LICHNEROWICZ, A
    TRANVANTAN
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (04): : 205 - 210
  • [38] On Riemannian and non-Riemannian Optimisation, and Optimisation Geometry
    Lefevre, Jeanne
    Bouchard, Florent
    Said, Salem
    Le Bihan, Nicolas
    Manton, Jonathan H.
    [J]. IFAC PAPERSONLINE, 2021, 54 (09): : 578 - 583
  • [39] Riemannian manifolds in noncommutative geometry
    Lord, Steven
    Rennie, Adam
    Varilly, Joseph C.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (07) : 1611 - 1638
  • [40] Riemannian foliations of bounded geometry
    Alvarez Lopez, Jesus A.
    Kordyukov, Yuri A.
    Leichtnam, Eric
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (14-15) : 1589 - 1608