Generalized and inverse generalized synchronization of fractional-order discrete-time chaotic systems with non-identical dimensions

被引:17
|
作者
Khennaoui, Amina-Aicha [1 ]
Ouannas, Adel [2 ]
Bendoukha, Samir [3 ]
Grassi, Giuseppe [4 ]
Wang, Xiong [5 ]
Viet-Thanh Pham [6 ]
机构
[1] Univ Larbi Ben Mhidi, Dept Math & Comp Sci, Oum El Bouaghi, Algeria
[2] Tebessa Univ, Math & Comp Sci Dept, Tebessa, Algeria
[3] Taibah Univ, Dept Elect Engn, Coll Engn, Yanbu, Saudi Arabia
[4] Univ Salento, Dipartimento Ingn Innovaz, Lecce, Italy
[5] Shenzhen Univ, Inst Adv Study, Shenzhen, Peoples R China
[6] Ton Duc Thang Univ, Fac Elect & Elect Engn, Modeling Evolutionary Algorithms Simulat & Artifi, Ho Chi Minh City, Vietnam
关键词
Discrete chaos; Discrete fractional calculus; Generalized synchronization; Inverse generalized synchronization; Different dimensions; IMPULSIVE SYNCHRONIZATION; STABILITY ANALYSIS; DYNAMICAL-SYSTEMS; HYPERCHAOS; RIEMANN; MAPS;
D O I
10.1186/s13662-018-1764-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce two approaches to the generalized synchronized synchronization and the inverse generalized synchronization of fractional discrete-time chaotic systems with non-identical dimensions. The convergence of the proposed approaches is established by means of recently developed stability theory. Numerical results are presented based on well-known maps in the literature. Two examples are considered: a 3D generalized synchronization and a 2D inverse generalized synchronization.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method
    M. Srivastava
    S. P. Ansari
    S. K. Agrawal
    S. Das
    A. Y. T. Leung
    Nonlinear Dynamics, 2014, 76 : 905 - 914
  • [32] Generalized synchronization of two non-identical chaotic systems based on fuzzy model
    Yang Dong-Sheng
    Zhang Hua-Guang
    Li Ai-Ping
    Meng Zi-Yi
    ACTA PHYSICA SINICA, 2007, 56 (06) : 3121 - 3126
  • [33] Adaptive feedback control and synchronization of non-identical chaotic fractional order systems
    Zaid M. Odibat
    Nonlinear Dynamics, 2010, 60 : 479 - 487
  • [34] Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions
    Wang Sha
    Yu Yong-Guang
    CHINESE PHYSICS LETTERS, 2012, 29 (02)
  • [35] Generalized Synchronization Involving a Linear Combination of Fractional-Order Chaotic Systems
    Sayed, Wafaa S.
    Radwan, Ahmed G.
    Abd-El-Hafiz, Salwa K.
    2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2016,
  • [36] Compound Generalized Function Projective Synchronization for Fractional-Order Chaotic Systems
    Yang, Chunde
    Cai, Hao
    Zhou, Ping
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [37] Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems
    Boulkroune, A.
    Bouzeriba, A.
    Bouden, T.
    NEUROCOMPUTING, 2016, 173 : 606 - 614
  • [38] Modified generalized projective synchronization of fractional-order chaotic Lu systems
    Liu, Jian
    Liu, Shutang
    Yuan, Chunhua
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [39] Generalized synchronization for fractional-order chaotic systems with same or different structure
    Min, Fu-Hong
    Wang, Zhi-Quan
    Kongzhi yu Juece/Control and Decision, 2008, 23 (09): : 1025 - 1029
  • [40] Modified generalized projective synchronization of fractional-order chaotic Lü systems
    Jian Liu
    Shutang Liu
    Chunhua Yuan
    Advances in Difference Equations, 2013