Machine-Learning Approach to Analysis of Driving Simulation Data

被引:0
|
作者
Yoshizawa, Akira [1 ]
Nishiyama, Hiroyuki [2 ]
Iwasaki, Hirotoshi [1 ]
Mizoguchi, Fumio [2 ,3 ]
机构
[1] Denso IT Lab, Shibuya Ku, Tokyo 1500002, Japan
[2] Tokyo Univ Sci, Fac Sci & Tech, Yamazaki 2641, Noda, Chiba 2788510, Japan
[3] WisdomTex Co Ltd, Meguro Ku, 1-17-3 Meguro Ku, Tokyo 1530063, Japan
关键词
Machine Learning; Support Vector Machine; Car Driving Simulation; Eye-Movement Data;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In our study, we sought to generate rules for cognitive distractions of car drivers using data from a driving simulation environment. We collected drivers' eye-movement and driving data from 18 research participants using a simulator. Each driver drove the same IS-minute course two times. The first drive was normal driving (no-load driving), and the second drive was driving with a mental arithmetic task (load driving), which we defined as cognitive-distraction driving. To generate rules of distraction driving using a machine-learning tool, we transformed the data at constant time intervals to generate qualitative data for learning. Finally, we generated rules using a Support Vector Machine (SVM).
引用
收藏
页码:398 / 402
页数:5
相关论文
共 50 条
  • [41] Examining the radius valley: a machine-learning approach
    MacDonald, Mariah G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (04) : 5062 - 5069
  • [42] A machine-learning approach to optimal bid pricing
    Lawrence, RD
    COMPUTATIONAL MODELING AND PROBLEM SOLVING IN THE NETWORKED WORLD: INTERFACES IN COMPUTER SCIENCE AND OPERATIONS RESEARCH, 2002, 21 : 97 - 118
  • [43] A Machine-Learning Approach to Autonomous Music Composition
    Lichtenwalter, Ryan
    Lichtenwalter, Katerina
    Chawla, Nitesh
    JOURNAL OF INTELLIGENT SYSTEMS, 2010, 19 (02) : 95 - 123
  • [44] Machine-learning Approach to Microbial Colony Localisation
    Michal, Cicatka
    Radim, Burget
    Jan, Karasek
    2022 45TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING, TSP, 2022, : 206 - 211
  • [45] Machine-Learning Methods on Noisy and Sparse Data
    Poulinakis, Konstantinos
    Drikakis, Dimitris
    Kokkinakis, Ioannis W.
    Spottswood, Stephen Michael
    MATHEMATICS, 2023, 11 (01)
  • [46] Machine-learning approach identifies wolfcamp reservoirs
    Carpenter C.
    JPT, Journal of Petroleum Technology, 2019, 71 (03): : 87 - 89
  • [47] Machine-learning approach to holographic particle characterization
    1600, OSA - The Optical Society (22):
  • [48] A machine-learning approach to predict postprandial hypoglycemia
    Wonju Seo
    You-Bin Lee
    Seunghyun Lee
    Sang-Man Jin
    Sung-Min Park
    BMC Medical Informatics and Decision Making, 19
  • [49] Machine-Learning based IoT Data Caching
    Pahl, Marc-Oliver
    Liebald, Stefan
    Wuestrich, Lars
    2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), 2019,
  • [50] Machine-learning classifiers for imbalanced tornado data
    Trafalis T.B.
    Adrianto I.
    Richman M.B.
    Lakshmivarahan S.
    Computational Management Science, 2014, 11 (4) : 403 - 418