A machine-learning approach to predict postprandial hypoglycemia

被引:0
|
作者
Wonju Seo
You-Bin Lee
Seunghyun Lee
Sang-Man Jin
Sung-Min Park
机构
[1] Department of Creative IT engineering,
[2] POSTECH,undefined
[3] Division of Endocrinology and Metabolism,undefined
[4] Department of Medicine,undefined
[5] Samsung Medical Center,undefined
[6] Sungkyunkwan University School of Medicine,undefined
关键词
Hypoglycemia; Risk prediction; Machine-learning approach; Diabetes;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A machine-learning approach to predict postprandial hypoglycemia
    Seo, Wonju
    Lee, You-Bin
    Lee, Seunghyun
    Jin, Sang-Man
    Park, Sung-Min
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [2] A novel machine-learning based approach to predict flares of psoriasis
    Ramelyte, E.
    Djamei, V.
    Maul, T. J.
    Anzengruber, F.
    Navarini, A.
    [J]. EXPERIMENTAL DERMATOLOGY, 2018, 27 (03) : E44 - E45
  • [3] A MACHINE-LEARNING APPROACH TO EARLY RECOGNITION OF SEVERE HYPOGLYCEMIA: THE SHAPE OF GLUCOSE VARIABILITY
    Galderisi, A.
    Kraemer, K.
    Zammataro, L.
    Nally, L.
    Tichey, E.
    Sikes, K.
    Siebel, S.
    Tamborlane, W.
    Steil, G.
    Sherr, J.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2019, 21 : A77 - A77
  • [4] Machine-learning approach to predict work hardening behavior of pearlitic steel
    Qiao, Ling
    Liu, Yong
    Zhu, Jingchuan
    Wang, Zibo
    [J]. MATERIALS LETTERS, 2021, 289
  • [5] A machine-learning approach to predict Upper Gastrointestinal multidisciplinary team treatment decisions
    Thavanesan, Navamayooran
    Vigneswaran, Ganesh
    Rahman, Saqib
    Underwood, Timothy
    [J]. BRITISH JOURNAL OF SURGERY, 2022, 109
  • [6] A Machine-learning Approach to Predict Missing Flux Densities in Multiband Galaxy Surveys
    Chartab, Nima
    Mobasher, Bahram
    Cooray, Asantha R.
    Hemmati, Shoubaneh
    Sattari, Zahra
    Ferguson, Henry C.
    Sanders, David B.
    Weaver, John R.
    Stern, Daniel K.
    McCracken, Henry J.
    Masters, Daniel C.
    Toft, Sune
    Capak, Peter L.
    Davidzon, Iary
    Dickinson, Mark E.
    Rhodes, Jason
    Moneti, Andrea
    Ilbert, Olivier
    Zalesky, Lukas
    McPartland, Conor J. R.
    Szapudi, Istvan
    Koekemoer, Anton M.
    Teplitz, Harry I.
    Giavalisco, Mauro
    [J]. ASTROPHYSICAL JOURNAL, 2023, 942 (02):
  • [7] Machine-Learning Approach to Predict Total Fabrication Duration of Industrial Pipe Spools
    Mohsen, Osama
    Petre, Cristian
    Mohamed, Yasser
    [J]. JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2023, 149 (02)
  • [8] A Novel Machine-Learning Approach to Predict Stress-Responsive Genes in Arabidopsis
    Nazari, Leyla
    Ghotbi, Vida
    Nadimi, Mohammad
    Paliwal, Jitendra
    [J]. ALGORITHMS, 2023, 16 (09)
  • [9] A machine-learning approach to predict success of a biocontrol for invasive Eurasian watermilfoil reduction
    White, Diana T.
    Antoniou, Thibaud M.
    Martin, Jonathan M.
    Kmetz, William
    Twiss, Michael R.
    [J]. ECOLOGICAL APPLICATIONS, 2022, 32 (06)
  • [10] MACHINE-LEARNING, A POWERFUL APPROACH TO PREDICT OUTCOME IN LUNG TRANSPLANTATION: PRELIMINARY RESULTS
    Fessler, Julien
    Gouy-Pailler, Cedric
    Roux, Antoine
    Sage, Edouard
    Fischler, Marc
    Le Guen, Morgan
    [J]. TRANSPLANT INTERNATIONAL, 2019, 32 : 363 - 364