Multi-objective optimization of an innovative power-cooling integrated system based on gas turbine cycle with compressor inlet air precooling, Kalina cycle and ejector refrigeration cycle

被引:16
|
作者
Du, Yang [1 ,2 ]
Jiang, Nan [1 ]
Zhang, Yicen [1 ]
Wang, Xu [1 ]
Zhao, Pan [1 ]
Wang, Jiangfeng [1 ]
Dai, Yiping [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Turbomachinery, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China
[2] Tech Univ Denmark, Dept Energy Convers & Storage, DK-4000 Roskilde, Denmark
关键词
Ejector refrigeration cycle; Kalina cycle; Air precooling; Multi-objective optimization; Gas turbine; WASTE HEAT-RECOVERY; PERFORMANCE ANALYSIS; THERMODYNAMIC ANALYSIS; DESIGN; DRIVEN; ORC;
D O I
10.1016/j.enconman.2021.114473
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, an innovative power-cooling integrated system based on gas turbine, Kalina cycle system, ejector refrigeration cycle (GT-KCS-ERC) is proposed. The ERC driven by GT flue gas and KCS low concentration liquid waste heat is utilized to precool GT inlet air for producing extra power from GT and provide some cooling capacity for users, simultaneously. The comprehensive thermodynamic and thermo-economic analyses are conducted to demonstrate the feasibility of novel GT-KCS-ERC hybrid system by comparing with standalone GT-KCS system. Furthermore, the effects of seven key operation parameters on the system performances are investigated. The multi-objective optimization of GT-KCS-ERC hybrid system and standalone GT-KCS system is carried out through Non-dominated Sorting Genetic Algorithm-II, in which the objectives are maximum total energy efficiency and minimum levelized cost of energy (LCOE). The results show that the total energy efficiency of GTKCS-ERC increases with increasing pinch point temperature difference of boiler Delta TKCS,boi and decreasing ammonia concentration of working solution in KCS, while that of standalone GT-KCS shows opposite trends. The LCOE of GT-KCS-ERC is lower than that of standalone GT-KCS as Delta TKCS,boi is larger than 21 degrees C or turbine inlet pressure of KCS is higher than 6.6 MPa. The optimal saturated evaporator temperature and pressure ratio of vapor generator to condenser in ERC with optimal refrigerant of R290 are 0 degrees C and 4, respectively. Under the optimal condition, the GT-KCS-ERC with an ERC secondary flow split ratio of 0.162 for precooling GT inlet air presents 219.4 kW more net power and 764.2 kW more cooling capacity than standalone GT-KCS system. The LCOE decreases by 0.802% and total energy efficiency increases by 5.347% in novel GT-KCS-ERC system comparing with standalone GT-KCS system.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant
    Yang, Cheng
    Yang, Zeliang
    Cai, Ruixian
    APPLIED ENERGY, 2009, 86 (06) : 848 - 856
  • [32] Technical and economic evaluation of gas turbine inlet air cooling in a combined cycle power plant
    Tehrani, Seyed Saeed Mostafavi
    Avval, Majid Saffar
    Alvandifar, Negar
    Rabiei, Hossein
    2011 PROCEEDINGS OF THE 3RD CONFERENCE ON THERMAL POWER PLANTS (CTPP), 2011,
  • [33] Load-regulation characteristics of gas turbine combined cycle power system controlled with compressor inlet air heating
    Fan, Kunle
    Yang, Cheng
    Xie, Zhuli
    Ma, Xiaoqian
    APPLIED THERMAL ENGINEERING, 2021, 196
  • [34] Efficient Power Characteristic Analysis and Multi-Objective Optimization for an Irreversible Simple Closed Gas Turbine Cycle
    Qiu, Xingfu
    Chen, Lingen
    Ge, Yanlin
    Shi, Shuangshuang
    ENTROPY, 2022, 24 (11)
  • [35] Systematic analysis and multi-objective optimization of an integrated power and freshwater production cycle
    Bahari, Mehran
    Entezari, Ashkan
    Esmaeilion, Farbod
    Ahmadi, Abolfazl
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (43) : 18831 - 18856
  • [36] Multi-objective Optimization Analysis Based on Flash Cycle Combined Power Generation System
    Lu, Danfeng
    Zhang, Jiashun
    Shang, Liyan
    Zhou, Li
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2022, 43 (05): : 1163 - 1173
  • [37] Thermoeconomic investigation and multi-objective optimization of a novel efficient solar tower power plant based on supercritical Brayton cycle with inlet cooling
    Zhou, Jincheng
    Ali, Masood Ashraf
    Zeki, Firas Muhammad
    Dhahad, Hayder A.
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 39
  • [38] Thermodynamic analysis and multi objective optimization of kalina and absorption cycle for power and cooling driven by lahendong geothermal source
    Nasruddin
    Monasari, Ratna
    Dewantoro, Bagus Rizky
    Attharik, Mochammad Ilham
    Wibowo, Agung Satrio
    Surachman, Arief
    2ND INTERNATIONAL TROPICAL RENEWABLE ENERGY CONFERENCE (I-TREC) 2017, 2018, 105
  • [39] Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling,Heating and Power System
    LIU Jiejie
    LI Yao
    MENG Xianyang
    WU Jiangtao
    Journal of Thermal Science, 2024, 33 (03) : 931 - 950
  • [40] Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling, Heating and Power System
    Liu, Jiejie
    Li, Yao
    Meng, Xianyang
    Wu, Jiangtao
    JOURNAL OF THERMAL SCIENCE, 2024, 33 (03) : 931 - 950