Optimization of Parallel and Serpentine Configurations for Polymer Electrolyte Membrane Fuel Cells

被引:22
|
作者
Guo, N. [1 ]
Leu, M. C. [1 ]
Koylu, U. O. [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA
基金
美国国家科学基金会;
关键词
Fuel Cells; Flow Field; Modeling; Optimization Model; PEMFC; Performance Improvement; Parallel Configuration; Serpentine Configuration; FLOW DISTRIBUTION; CHANNEL CONFIGURATIONS; PRESSURE-DROP; BIPOLAR PLATES; FIELD; MODEL; PERFORMANCE; DESIGN; NETWORKS;
D O I
10.1002/fuce.201400127
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A network-based optimization model was developed to optimize the channel dimensions of flow fields in order to achieve a uniform flow distribution and improve the performance of polymer electrolyte membrane (PEM) fuel cells. Different flow field configurations, including parallel, parallel-in-series, and serpentine, were investigated using the present optimization model. Two cases, with and without considering reactant consumption, were compared to show the effect of including reactant consumption on the flow field designs. The results demonstrated that the optimized designs significantly improved the flow velocity distribution in all the configurations investigated. The optimized designs with consideration of reactant consumption exhibited more uniform flow velocity distribution when the entire fuel cell unit was considered. Additionally, the performances of PEM fuel cells for the conventional and optimized flow field designs were studied with a three-dimensional, two-phase fuel cell simulation model, and the computational results showed that the optimized designs with considering reactant consumption produced the highest maximum power density for each configuration investigated. These results show that the network-based model is capable of optimizing various flow field configurations with flexibility and indicate the importance of considering reactant consumption in the optimization model.
引用
收藏
页码:876 / 885
页数:10
相关论文
共 50 条
  • [41] Innovative flow field design strategies for performance optimization in polymer electrolyte membrane fuel cells
    Choi, Jaeyoo
    Park, Yooseong
    Park, Jihoon
    Kim, Chanyoung
    Heo, Seongku
    Kim, Sun-Dong
    Ju, Hyunchul
    APPLIED ENERGY, 2025, 377
  • [42] Design strategy for a polymer electrolyte membrane fuel cell flow-field capable of switching between parallel and interdigitated configurations
    Santamaria, Anthony D.
    Bachman, John
    Park, Jae Wan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (14) : 5807 - 5812
  • [43] Effect of air contaminants on electrolyte degradation in polymer electrolyte membrane fuel cells
    Imamura, D.
    Yamaguchi, E.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 9, 2009, 25 (01): : 813 - 819
  • [44] Segmented polymer electrolyte membrane fuel cells-A review
    Perez, Luis C.
    Brandao, Lucia
    Sousa, Jose M.
    Mendes, Adelio
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01): : 169 - 185
  • [45] Platinum-catalyzed polymer electrolyte membrane for fuel cells
    Hwang, TJ
    Shao, H
    Richards, N
    Schmitt, J
    Hunt, A
    Lin, WY
    NEW MATERIALS FOR BATTERIES AND FUEL CELLS, 2000, 575 : 239 - 246
  • [46] Local Degradation at Membrane Defects in Polymer Electrolyte Fuel Cells
    Kreitmeier, Stefan
    Lerch, Philippe
    Wokaun, Alexander
    Buechi, Felix N.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) : F456 - F463
  • [47] Investigation of oxygen gain in polymer electrolyte membrane fuel cells
    Prasanna, A
    Ha, HY
    Cho, EA
    Hong, SA
    Oh, IH
    JOURNAL OF POWER SOURCES, 2004, 137 (01) : 1 - 8
  • [48] A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells
    Ji, Mengbo
    Wei, Zidong
    ENERGIES, 2009, 2 (04) : 1057 - 1106
  • [49] Limit Operating Temperature in Polymer Electrolyte Membrane Fuel Cells
    Riascos, Luis A. M.
    Pereira, David D.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (09) : B1051 - B1058
  • [50] Polymer electrolyte membrane fuel cells (PEMFCs) for electric vehicles
    Wilkinson, DP
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2000, 3 (03) : 183 - 183