Limit Operating Temperature in Polymer Electrolyte Membrane Fuel Cells

被引:12
|
作者
Riascos, Luis A. M. [1 ]
Pereira, David D. [1 ]
机构
[1] Fed Univ ABC, Sao Paulo, Brazil
关键词
humidity; proton exchange membrane fuel cells; stoichiometry; FAULT DIAGNOSTIC SYSTEM; STACKS; WATER; MODEL; PEMFCS; HUMIDIFICATION; PERFORMANCE; TRANSPORT; STATE;
D O I
10.1149/1.3158566
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this research, a control technique for polymer electrolyte membrane (PEM) fuel cells based on the limit operating temperature is introduced. The limit operating temperature is the highest temperature in which the PEM fuel cell can operate, preserving a recommended relative humidity and air stoichiometry. The operating temperature influences the fuel cell voltage; the higher the temperature, the better the voltage. A PEM fuel cell model is applied to analyze the evolution and dependence among the variables. The tests were performed considering two situations: PEM fuel cells without extra humidification and PEM fuel cells with an external humidifier. Also, the influence of humidity and temperature of the input air can be analyzed separately. The results show that the limit temperature strategy is stable and consistent under different operational conditions such as different load requirements and presence/absence of extra humidification.
引用
收藏
页码:B1051 / B1058
页数:8
相关论文
共 50 条
  • [1] Temperature Effects in Polymer Electrolyte Membrane Fuel Cells
    Lochner, Tim
    Kluge, Regina M.
    Fichtner, Johannes
    El-Sayed, Hany A.
    Garlyyev, Batyr
    Bandarenka, Aliaksandr S.
    [J]. CHEMELECTROCHEM, 2020, 7 (17) : 3545 - 3568
  • [2] Experimental Analysis on the Influence of Operating Profiles on High Temperature Polymer Electrolyte Membrane Fuel Cells
    Chinese, Tancredi
    Ustolin, Federico
    Marmiroli, Benedetta
    Amenitsch, Heinz
    Taccani, Rodolfo
    [J]. ENERGIES, 2021, 14 (20)
  • [3] Effect of operating conditions on carbon corrosion in polymer electrolyte membrane fuel cells
    Lim, Katie Heeyum
    Oh, Hyung-Suk
    Jang, Sang-Eun
    Ko, Young-Jin
    Kim, Hyun-Jong
    Kim, Hansung
    [J]. JOURNAL OF POWER SOURCES, 2009, 193 (02) : 575 - 579
  • [4] Magnetic Resonance Imaging of Water in Operating Polymer Electrolyte Membrane Fuel Cells
    Tsushima, S.
    Hirai, S.
    [J]. FUEL CELLS, 2009, 9 (05) : 506 - +
  • [5] Polymer Electrolyte Membrane Fuel Cells
    Antonio Asensio, Juan
    Pena, Juan
    Perez-Coll, Domingo
    Carlos Ruiz-Morales, Juan
    Marrero-Lopez, David
    Nunez, Pedro
    Ballesteros, Belen
    Canales-Vazquez, Jesus
    Borros, Salvador
    Gomez-Romero, Pedro
    [J]. AFINIDAD, 2011, 68 (554) : 246 - 258
  • [6] A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells
    Xu, C.
    Scott, K.
    Li, Q.
    Yang, J.
    Wu, X.
    [J]. FUEL CELLS, 2013, 13 (02) : 118 - 125
  • [7] Membrane depending properties of high temperature polymer electrolyte fuel cells
    Mahr, Ulrich
    Gronwald, Oliver
    Reiche, Annette
    Melzner, Dieter
    [J]. DESALINATION, 2006, 200 (1-3) : 648 - 649
  • [8] Nanostructure materials for low temperature polymer electrolyte membrane fuel cells
    Miecznikowski, Krzysztof
    [J]. OCHRONA PRZED KOROZJA, 2013, 56 (11): : 562 - 562
  • [9] A dynamic model for high temperature polymer electrolyte membrane fuel cells
    Boaventura, M.
    Sousa, J. M.
    Mendes, A.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (16) : 9842 - 9854
  • [10] Computational fluid dynamics simulation of polymer electrolyte membrane fuel cells operating on reformate
    Ehteshami, Seyyed Mohsen Mousavi
    Chan, S. H.
    [J]. ELECTROCHIMICA ACTA, 2011, 56 (05) : 2276 - 2283