Generalized AG codes and generalized duality

被引:8
|
作者
Dorfer, G
Maharaj, H
机构
[1] Vienna Univ Technol, Dept Algebra & Computat Math, A-1040 Vienna, Austria
[2] Austrian Acad Sci, Inst Discrete Math, A-1010 Vienna, Austria
[3] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
Goppa codes; algebraic curves; algebraic function fields; duality;
D O I
10.1016/S1071-5797(02)00027-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In (J. Pure Appl. Algebra 55 (1988) 199). Stichtenoth gave sufficient conditions for algebraic-geometric Goppa codes to be self-dual, We adapt this work using differentials to the setting of generalized AG codes introduced by Xing et al. (IEEE Trans. Inform. Theory 45 (1999) 2498). As a consequence we are naturally led to generalized notions of duality for codes. Many examples are presented. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:194 / 210
页数:17
相关论文
共 50 条
  • [21] GENERALIZED TRACEABILITY CODES
    Mazrooei, Majid
    Zaghian, Ali
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (02): : 205 - 212
  • [22] ON GENERALIZED SURJECTIVE CODES
    Quistorff, Joern
    Schlage-Puchta, Jan-Christoph
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2011, 48 (01) : 75 - 92
  • [23] Generalized Hermitian codes
    C. Munuera
    A. Sepúlveda
    F. Torres
    [J]. Designs, Codes and Cryptography, 2013, 69 : 123 - 130
  • [24] DUALITY IN GENERALIZED HOMOGENEOUS PROGRAMMING
    NOZAWA, R
    [J]. OSAKA JOURNAL OF MATHEMATICS, 1983, 20 (04) : 899 - 910
  • [25] A duality of generalized metric spaces
    Antoniuk, Sylwia
    Waszkiewicz, Pawel
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (17) : 2371 - 2381
  • [26] Generalized Hermitian codes
    Munuera, C.
    Sepulveda, A.
    Torres, F.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2013, 69 (01) : 123 - 130
  • [27] ON THE DUALITY OF GENERALIZED GEOMETRIC PROGRAMMING
    张建中
    朱德通
    [J]. Chinese Annals of Mathematics, 1992, (02) : 119 - 128
  • [28] Generalized local homology and duality
    Do Ngoc Yen
    Tran Tuan Nam
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (03) : 581 - 601
  • [29] On Brylawski's Generalized Duality
    Gordon, Gary
    [J]. MATHEMATICS IN COMPUTER SCIENCE, 2012, 6 (02) : 135 - 146
  • [30] Graded duality and generalized fractions
    Hübl, R
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 141 (03) : 225 - 247