A Robust Version of the Empirical Likelihood Estimator

被引:1
|
作者
Keziou, Amor [1 ,2 ]
Toma, Aida [3 ,4 ]
机构
[1] CNRS, UMR9008, Lab Math Reims, BP 1039, F-51687 Reims, France
[2] Univ Reims, UFR SEN, BP 1039, F-51687 Reims, France
[3] Bucharest Univ Econ Studies, Dept Appl Math, Piata Romana 6, Bucharest 010374, Romania
[4] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl, Calea 13 Septembrie 13, Bucharest 050711, Romania
关键词
moment condition models; estimation; robustness; empirical likelihood;
D O I
10.3390/math9080829
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a robust version of the empirical likelihood estimator for semiparametric moment condition models. This estimator is obtained by minimizing the modified Kullback-Leibler divergence, in its dual form, using truncated orthogonality functions. We prove the robustness and the consistency of the new estimator. The performance of the robust empirical likelihood estimator is illustrated through examples based on Monte Carlo simulations.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter
    Marazzi, Alfio
    Valdora, Marina
    Yohai, Victor
    Amiguet, Michael
    TEST, 2019, 28 (01) : 223 - 241
  • [32] Illumination Invariant Robust Likelihood Estimator for Particle Filtering Based Target Tracking
    Al Delail, Buti
    Bhaskar, Harish
    Zemerly, M. Jamal
    Al-Mualla, Mohammed
    ADVANCES IN VISUAL COMPUTING, PT II (ISVC 2015), 2015, 9475 : 618 - 627
  • [33] A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter
    Alfio Marazzi
    Marina Valdora
    Victor Yohai
    Michael Amiguet
    TEST, 2019, 28 : 223 - 241
  • [34] Modified Maximum Likelihood Integrated Robust Ratio Estimator in Simple Random Sampling
    Ahmad, Azaz
    Sanaullah, Aamir
    Hanif, Muhammad
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (03): : 133 - 145
  • [35] Robust Kalman Filter Based on a Generalized Maximum-Likelihood-Type Estimator
    Gandhi, Mital A.
    Mili, Lamine
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (05) : 2509 - 2520
  • [36] Robust penalized empirical likelihood estimation method for linear regression
    Arslan, Olcay
    Ozdemir, Senay
    STATISTICS, 2023, 57 (02) : 423 - 443
  • [37] Robust empirical likelihood for linear models under median constraints
    Shi, J
    Lau, TS
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1999, 28 (10) : 2465 - 2476
  • [38] Generalized empirical likelihood specification test robust to local misspecification
    Li, Haiqi
    Fan, Rui
    Park, Sung Y.
    ECONOMICS LETTERS, 2018, 171 : 149 - 153
  • [39] PRODUCT LIMIT ESTIMATOR AS MAXIMUM LIKELIHOOD ESTIMATOR
    JOHANSEN, S
    SCANDINAVIAN JOURNAL OF STATISTICS, 1978, 5 (04) : 195 - 199
  • [40] Doubly robust estimation and robust empirical likelihood in generalized linear models with missing responses
    Xue, Liugen
    STATISTICS AND COMPUTING, 2024, 34 (01)