Generalized empirical likelihood specification test robust to local misspecification

被引:0
|
作者
Li, Haiqi [1 ]
Fan, Rui [2 ]
Park, Sung Y. [3 ]
机构
[1] Hunan Univ, Coll Finance & Stat, Changsha, Hunan, Peoples R China
[2] Rensselaer Polytech Inst, Dept Econ, Troy, NY 12181 USA
[3] Chung Ang Univ, Sch Econ, Seoul, South Korea
基金
中国国家自然科学基金;
关键词
Generalized empirical likelihood; Local misspecification; Robust specification test; GMM; INFERENCE; GEL;
D O I
10.1016/j.econlet.2018.07.024
中图分类号
F [经济];
学科分类号
02 ;
摘要
It is well known that many of the standard specification tests may not be robust when the alternative is misspecified. This study analyzes a robust specification test for generalized empirical likelihood (GEL) estimators in a weakly dependent time series setting. We show that the usual score test statistic asymptotically follows a non-central chi-square distribution under the local misspecification in the GEL framework. Thus, it spuriously rejects the null hypothesis too frequently. We propose a robust score specification test that asymptotically follows a central chi-square distribution under the local misspecification. A Monte Carlo simulation verifies the usefulness of the proposed tests. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 153
页数:5
相关论文
共 50 条
  • [1] A new robust and most powerful test in the presence of local misspecification
    Bera, Anil K.
    Montes-Rojas, Gabriel
    Sosa-Escudero, Walter
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (16) : 8187 - 8198
  • [2] Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach
    Duchi, John C.
    Glynn, Peter W.
    Namkoong, Hongseok
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2021, 46 (03) : 946 - 969
  • [3] Robust Empirical Likelihood
    Keziou, Amor
    Toma, Aida
    [J]. GEOMETRIC SCIENCE OF INFORMATION (GSI 2021), 2021, 12829 : 841 - 848
  • [4] Doubly robust estimation and robust empirical likelihood in generalized linear models with missing responses
    Xue, Liugen
    [J]. STATISTICS AND COMPUTING, 2024, 34 (01)
  • [5] Doubly robust estimation and robust empirical likelihood in generalized linear models with missing responses
    Liugen Xue
    [J]. Statistics and Computing, 2024, 34
  • [6] Generalized Likelihood Ratio Test for Adversarially Robust Hypothesis Testing
    Puranik, Bhagyashree
    Madhow, Upamanyu
    Pedarsani, Ramtin
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 4124 - 4139
  • [7] Robust target identification using a generalized likelihood ratio test
    Mooney, JE
    Ding, Z
    Riggs, L
    [J]. ULTRA-WIDEBAND, SHORT-PULSE ELECTROMAGNETICS 3, 1997, : 343 - 350
  • [8] A GENERALIZED SPECIFICATION TEST
    HAUSMAN, JA
    TAYLOR, WE
    [J]. ECONOMICS LETTERS, 1981, 8 (03) : 239 - 245
  • [9] A HETEROSKEDASTICITY TEST ROBUST TO CONDITIONAL MEAN MISSPECIFICATION
    LEE, BJ
    [J]. ECONOMETRICA, 1992, 60 (01) : 159 - 171
  • [10] Robust Target Identification Using a Modified Generalized Likelihood Ratio Test
    Chen, Wei Cher
    Shuley, Nicholas V. Z.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (01) : 264 - 273