Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry

被引:41
|
作者
Yuan, Chongjian [1 ,2 ]
Xu, Wei [1 ,2 ]
Liu, Xiyuan [1 ,2 ]
Hong, Xiaoping [2 ]
Zhang, Fu [1 ,2 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Hong Kong 999077, Peoples R China
[2] Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen 518000, Peoples R China
关键词
Mapping; Localization; SLAM; REGISTRATION; VEHICLES;
D O I
10.1109/LRA.2022.3187250
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter proposes an efficient and probabilistic adaptive voxel mapping method for LiDAR odometry. The map is a collection of voxels; each contains one plane feature that enables the probabilistic representation of the environment and accurate registration of a new LiDAR scan. We further analyze the need for coarse-to-fine voxel mapping and then use a novel voxel map organized by a Hash table and octrees to build and update the map efficiently. We apply the proposed voxel map to an iterated extended Kalman filter and construct a maximum a posteriori probability problem for pose estimation. Experiments on the open KITTI dataset show the high accuracy and efficiency of our method compared to other state-of-the-art methods. Experiments on indoor and unstructured outdoor environments with solid-state LiDAR and non-repetitive scanning LiDAR further verify the adaptability of our mapping method to different environments and LiDAR scanning patterns (see our attached video(1)). Our codes and dataset are open-sourced on Github(2)
引用
收藏
页码:8518 / 8525
页数:8
相关论文
共 50 条
  • [21] F-LOAM : Fast LiDAR Odometry and Mapping
    Wang, Han
    Wang, Chen
    Chen, Chun-Lin
    Xie, Lihua
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4390 - 4396
  • [22] Efficient 3D Deep LiDAR Odometry
    Wang, Guangming
    Wu, Xinrui
    Jiang, Shuyang
    Liu, Zhe
    Wang, Hesheng
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5749 - 5765
  • [23] EVALUATION OF LIDAR ODOMETRY AND MAPPING BASED ON REFERENCE LASER SCANNING
    Koszyk, J.
    Labedz, P.
    Grzelka, K.
    Jasinska, A.
    Pargiela, K.
    Malczewska, A.
    Strzabala, K.
    Michalczak, M.
    Ambrozinski, L.
    [J]. 2ND GEOBENCH WORKSHOP ON EVALUATION AND BENCHMARKING OF SENSORS, SYSTEMS AND GEOSPATIAL DATA IN PHOTOGRAMMETRY AND REMOTE SENSING, VOL. 48-1, 2023, : 79 - 84
  • [24] I-LOAM: Intensity Enhanced LiDAR Odometry and Mapping
    Park, Yeong Sang
    Jang, Hyesu
    Kim, Ayoung
    [J]. 2020 17TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2020, : 455 - 458
  • [25] DV-LOAM: Direct Visual LiDAR Odometry and Mapping
    Wang, Wei
    Liu, Jun
    Wang, Chenjie
    Luo, Bin
    Zhang, Cheng
    [J]. REMOTE SENSING, 2021, 13 (16)
  • [26] R-LIO: Rotating Lidar Inertial Odometry and Mapping
    Chen, Kai
    Zhan, Kai
    Pang, Fan
    Yang, Xiaocong
    Zhang, Da
    [J]. SUSTAINABILITY, 2022, 14 (17)
  • [27] GNSS-Assisted LiDAR Odometry and Mapping for Urban Environment
    Du, Shitong
    Yu, Baoguo
    Huang, Lu
    Li, Yifan
    Li, Shuang
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (18) : 21787 - 21802
  • [28] Real-Time Lidar Odometry and Mapping with Loop Closure
    Liu, Yonghui
    Zhang, Weimin
    Li, Fangxing
    Zuo, Zhengqing
    Huang, Qiang
    [J]. SENSORS, 2022, 22 (12)
  • [29] LiDAR Odometry and Mapping Based on Semantic Information for Maize Field
    Dong, Naixi
    Chi, Ruijuan
    Zhang, Weitong
    [J]. AGRONOMY-BASEL, 2022, 12 (12):
  • [30] An improved feature extractor for the Lidar Odometry and Mapping (LOAM) algorithm
    Gonzalez, Clayder
    Adams, Martin
    [J]. ICCAIS 2019: THE 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES, 2019,