Smooth travelling wave solutions in a generalized Degasperis-Procesi equation

被引:7
|
作者
Zhu, Kun [1 ,4 ]
Shen, Jianhe [1 ,2 ,3 ]
机构
[1] Fujian Normal Univ, Sch Math & Informat, Fuzhou 350007, Peoples R China
[2] FJKLMAA Fujian Key Lab Math Anal & Applicat, Fuzhou 350007, Peoples R China
[3] Ctr Appl Math FJNU, Fuzhou 350007, Peoples R China
[4] Nanchang Normal Univ, Sch Math & Informat Sci, Nanchang 330032, Jiangxi, Peoples R China
关键词
Generalized Degasperis-Procesi equation; Travelling wave solutions; Geometric singular perturbation theory; Explicit" Melnikov integral;
D O I
10.1016/j.cnsns.2021.105763
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using a dynamical system-based approach, namely, the singular travelling wave method, we classify all the travelling wave solutions including periodic wave solutions, periodic peakon solutions, solitary wave solutions and compacton solutions etc. in the generalized Degasperis-Procesi (gDP) equation. All these travelling waves are smooth and classical solutions. The parameter conditions for the existence of these travelling waves are also obtained. Then we combine geometric singular perturbation theory with an "explicit"Melnikov method to analyze the persistence of solitary wave solutions under singular perturbation, i.e., the existence of solitary wave solutions in a perturbed gDP equation. By calculating the representations of the (unperturbed) homoclinic orbits and the associated Melnikov integral explicitly, the persistence of solitary wave solutions is shown and the speed of the wave is determined (to leading order). (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Control for the Traveling Wave Solution to the Degasperis-Procesi Equation
    Zong Xiju
    Zhang Yong
    Cheng Xingong
    [J]. 2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 963 - 967
  • [42] New exact traveling wave solutions for the modified form of Degasperis-Procesi equation
    Ma, Hong-Cai
    Yu, Yao-Dong
    Ge, Dong-Jie
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) : 792 - 798
  • [43] Spectral stability of smooth solitary waves for the Degasperis-Procesi equation
    Li, Ji
    Liu, Yue
    Wu, Qiliang
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 : 298 - 314
  • [44] The limiting behavior of smooth periodic waves for the Degasperis-Procesi equation
    Yin, Jiuli
    Tian, Lixin
    Fan, Xinghua
    [J]. PHYSICS LETTERS A, 2010, 375 (01) : 36 - 38
  • [45] Solitons, Peakons, and Periodic Cuspons of a Generalized Degasperis-Procesi Equation
    Zhou, Jiangbo
    Tian, Lixin
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [46] Soliton and shock wave solutions to the Degasperis-Procesi equation with power law nonlinearity
    Triki, Houria
    Hayat, T.
    Aldossary, Omar M.
    Biswas, Anjan
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2011, 21 (04) : 543 - 553
  • [47] Stability of smooth periodic traveling waves in the Degasperis-Procesi equation
    Geyer, Anna
    Pelinovsky, Dmitry E.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 404 : 354 - 390
  • [48] Orbital stability of the sum of smooth solitons in the Degasperis-Procesi equation
    Li, Ji
    Liu, Yue
    Wu, Qiliang
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 163 : 204 - 230
  • [49] On the L1 Stability to a Generalized Degasperis-Procesi Equation
    Yan, Haibo
    Yong, Ls
    Hu, Hanlei
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [50] ORBITAL STABILITY OF SMOOTH SOLITARY WAVES FOR THE DEGASPERIS-PROCESI EQUATION
    Li, Ji
    Liu, Yue
    Wu, Qiliang
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 151 - 160