Stability of smooth periodic traveling waves in the Degasperis-Procesi equation

被引:1
|
作者
Geyer, Anna [1 ]
Pelinovsky, Dmitry E. [2 ,3 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, Fac Elect Engn Math & Comp Sci, Mekelweg 4, NL-2628 CD Delft, Netherlands
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[3] Nizhnii Novgorod State Tech Univ, Dept Appl Math, 24 Minin St, Nizhnii Novgorod 603950, Russia
关键词
KORTEWEG-DE-VRIES; CAMASSA-HOLM; SPECTRAL INSTABILITY; FAMILY;
D O I
10.1016/j.jde.2024.05.047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a precise energy stability criterion for smooth periodic waves in the Degasperis-Procesi (DP) equation. Compared to the Camassa-Holm (CH) equation, the number of negative eigenvalues of an associated Hessian operator changes in the existence region of smooth periodic waves. We utilize properties of the period function with respect to two parameters in order to obtain a smooth existence curve for the family of smooth periodic waves with a fixed period. The energy stability condition is derived on parts of this existence curve, which correspond to either one or two negative eigenvalues of the Hessian operator. We show numerically that the energy stability condition is satisfied on either part of the curve and prove analytically that it holds in a neighborhood of the boundary of the existence region of smooth periodic waves. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:354 / 390
页数:37
相关论文
共 50 条
  • [1] The limiting behavior of smooth periodic waves for the Degasperis-Procesi equation
    Yin, Jiuli
    Tian, Lixin
    Fan, Xinghua
    PHYSICS LETTERS A, 2010, 375 (01) : 36 - 38
  • [2] Spectral stability of smooth solitary waves for the Degasperis-Procesi equation
    Li, Ji
    Liu, Yue
    Wu, Qiliang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 : 298 - 314
  • [3] ORBITAL STABILITY OF SMOOTH SOLITARY WAVES FOR THE DEGASPERIS-PROCESI EQUATION
    Li, Ji
    Liu, Yue
    Wu, Qiliang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 151 - 160
  • [4] On traveling waves of the quadratic-cubic Degasperis-Procesi equation
    Han, Xuanxuan
    Yang, Shaojie
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (02): : 259 - 274
  • [5] On traveling waves of the quadratic-cubic Degasperis-Procesi equation
    Xuanxuan Han
    Shaojie Yang
    Monatshefte für Mathematik, 2022, 199 : 259 - 274
  • [6] Traveling wave solutions of the Degasperis-Procesi equation
    Lenells, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (01) : 72 - 82
  • [7] Orbital stability of the sum of smooth solitons in the Degasperis-Procesi equation
    Li, Ji
    Liu, Yue
    Wu, Qiliang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 163 : 204 - 230
  • [8] Stability of Peakons for the Degasperis-Procesi Equation
    Lin, Zhiwu
    Liu, Yue
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (01) : 125 - 146
  • [9] Breaking and permanent waves for the periodic μ-Degasperis-Procesi equation with linear dispersion
    Guo, Fei
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [10] Bifurcations of smooth and nonsmooth traveling wave solutions in a generalized degasperis-procesi equation
    Zhang, Lijun
    Chen, Li-Qun
    Huo, Xuwen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) : 174 - 185