BAYESIAN CRAMER-RAO TYPE BOUND FOR RISK-UNBIASED ESTIMATION WITH DETERMINISTIC NUISANCE PARAMETERS

被引:0
|
作者
Bar, Shahar [1 ]
Tabrikian, Joseph [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
关键词
Bayesian Cramer-Rao bound; hybrid Cramer-Rao bound; Lehmann unbiasedness; Risk unbiasedness; nuisance parameters; MSE; PREDICTION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we derive a Bayesian Cramer-Rao type bound in the presence of unknown nuisance deterministic parameters. The most popular bound for parameter estimation problems which involves both deterministic and random parameters is the hybrid Cramer-Rao bound (HCRB). This bound is very useful especially, when one is interested in both the deterministic and random parameters and in the coupling between their estimation errors. The HCRB imposes locally unbiasedness for the deterministic parameters. However, in many signal processing applications, the unknown deterministic parameters are treated as nuisance, and it is unnecessary to impose unbiasedness on these parameters. In this work, we establish a new Cramer-Rao type bound on the mean square error (MSE) of Bayesian estimators with no unbiasedness condition on the nuisance parameters. Alternatively, we impose unbiasedness in the Lehmann sense for a risk that measures the distance between the estimator and the minimum MSE estimator which assumes perfect knowledge of the nuisance parameters. The proposed bound is compared to the HCRB and MSE of Bayesian estimators with maximum likelihood estimates for the nuisance parameters. Simulations show that the proposed bound provides tighter lower bound for these estimators.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] The Risk-Unbiased Cramer-Rao Bound for Non-Bayesian Multivariate Parameter Estimation
    Bar, Shahar
    Tabrikian, Joseph
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (18) : 4920 - 4934
  • [2] A RISK-UNBIASED APPROACH TO A NEW CRAMER-RAO BOUND
    Bar, Shahar
    Tabrikian, Joseph
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2921 - 2925
  • [3] Bayesian Risk With Bregman Loss: A Cramer-Rao Type Bound and Linear Estimation
    Dytso, Alex
    Fauss, Michael
    Poor, H. Vincent
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (03) : 1985 - 2000
  • [4] A Risk-Unbiased Bound for Information Fusion with Nuisance Parameters
    Bar, Shahar
    Tabrikian, Joseph
    [J]. 2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 504 - 511
  • [5] Simple general expression for Cramer-Rao bound in presence of nuisance parameters
    Dilaveroglu, E
    [J]. ELECTRONICS LETTERS, 2002, 38 (25) : 1750 - 1751
  • [6] Bayesian Periodic Cramer-Rao Bound
    Routtenberg, Tirza
    Tabrikian, Joseph
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1878 - 1882
  • [7] A TIGHTER BAYESIAN CRAMER-RAO BOUND
    Bacharach, Lucien
    Fritsche, Carsten
    Orguner, Umut
    Chaumette, Eric
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5277 - 5281
  • [8] A "Reciprocity" Property of the Unbiased Cramer-Rao Bound for Vector Parameter Estimation
    D'Amico, Antonio A.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (05) : 615 - 619
  • [9] Bayesian Cramer-Rao bound for dynamical phase offset estimation
    Bay, S.
    Herzet, C.
    Brossier, J. M.
    Barbot, J. P.
    Renaux, A.
    Geller, B.
    [J]. 2007 IEEE 8TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, VOLS 1 AND 2, 2007, : 285 - +
  • [10] CRAMER-RAO BOUND FOR RANGE ESTIMATION
    Wang, Yiyin
    Leus, Geert
    van der Veen, Alle-Jan
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3301 - 3304