A RISK-UNBIASED APPROACH TO A NEW CRAMER-RAO BOUND

被引:0
|
作者
Bar, Shahar [1 ]
Tabrikian, Joseph [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
关键词
Cramer-Rao bound; Lehmann unbiasedness; risk-unbiasedness; nuisance parameters; MSE; NUISANCE PARAMETERS; BAYESIAN-ESTIMATION; PERFORMANCE; PREDICTION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
How accurately can one estimate a deterministic parameter subject to other unknown deterministic model parameters? The most popular answer to this question is given by the Cramer-Rao bound (CRB). The main assumption behind the derivation of the CRB is local unbiased estimation of all model parameters. The foundations of this work rely on doubting this assumption. Each parameter in its turn is treated as a single parameter of interest, while the other model parameters are treated as nuisance, as their mis-knowledge interferes with the estimation of the parameter of interest. Correspondingly, a new Cramer-Rao-type bound on the mean squared error (MSE) of non-Bayesian estimators is established with no unbiasedness condition on the nuisance parameters. Alternatively, Lehmann's concept of unbiasedness is imposed for a risk that measures the distance between the estimator and the locally best unbiased (LBU) estimator which assumes perfect knowledge of the nuisance parameters. The proposed bound is compared to the CRB and MSE of the maximum likelihood estimator (MLE). Simulations show that the proposed bound provides a tight lower bound for this estimator, compared with the CRB.
引用
收藏
页码:2921 / 2925
页数:5
相关论文
共 50 条
  • [1] BAYESIAN CRAMER-RAO TYPE BOUND FOR RISK-UNBIASED ESTIMATION WITH DETERMINISTIC NUISANCE PARAMETERS
    Bar, Shahar
    Tabrikian, Joseph
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [2] The Risk-Unbiased Cramer-Rao Bound for Non-Bayesian Multivariate Parameter Estimation
    Bar, Shahar
    Tabrikian, Joseph
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (18) : 4920 - 4934
  • [3] ON BIASED-ESTIMATORS AND THE UNBIASED CRAMER-RAO LOWER BOUND
    STOICA, P
    MOSES, RL
    [J]. SIGNAL PROCESSING, 1990, 21 (04) : 349 - 350
  • [4] A "Reciprocity" Property of the Unbiased Cramer-Rao Bound for Vector Parameter Estimation
    D'Amico, Antonio A.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (05) : 615 - 619
  • [5] GEOMETRY OF THE CRAMER-RAO BOUND
    SCHARF, LL
    MCWHORTER, LT
    [J]. SIGNAL PROCESSING, 1993, 31 (03) : 301 - 311
  • [6] Learning to Bound: A Generative Cramer-Rao Bound
    Habi, Hai Victor
    Messer, Hagit
    Bresler, Yoram
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1216 - 1231
  • [7] CRAMER-RAO BOUND FOR RANGE ESTIMATION
    Wang, Yiyin
    Leus, Geert
    van der Veen, Alle-Jan
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3301 - 3304
  • [8] CONCENTRATED CRAMER-RAO BOUND EXPRESSIONS
    HOCHWALD, B
    NEHORAI, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) : 363 - 371
  • [9] Cramer-Rao bound for gated PET
    Cloquet, Christophe
    Goldman, Serge
    Defrise, Michel
    [J]. 2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 2267 - 2272
  • [10] Bayesian Periodic Cramer-Rao Bound
    Routtenberg, Tirza
    Tabrikian, Joseph
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1878 - 1882