Bayesian Risk With Bregman Loss: A Cramer-Rao Type Bound and Linear Estimation

被引:3
|
作者
Dytso, Alex [1 ]
Fauss, Michael [2 ]
Poor, H. Vincent [2 ]
机构
[1] New Jersey Inst Technol NJIT, Dept Elect & Comp Engn, Newark, NJ 07102 USA
[2] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Bayes methods; Estimation; Symmetric matrices; Random variables; Upper bound; Probability density function; Wireless communication; Cramer-Rao; minimum mean squared error (MMSE); Bregman divergence; linear estimation; Poisson noise; Gaussian Noise; MUTUAL INFORMATION; VECTOR POISSON; ENTROPY; ERROR; DIVERGENCE; GRADIENT;
D O I
10.1109/TIT.2021.3130381
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A general class of Bayesian lower bounds when the underlying loss function is a Bregman divergence is demonstrated. This class can be considered as an extension of the Weinstein-Weiss family of bounds for the mean squared error and relies on finding a variational characterization of Bayesian risk. This approach allows for the derivation of a version of the Cramer-Rao bound that is specific to a given Bregman divergence. This new generalization of the Cramer-Rao bound reduces to the classical one when the loss function is taken to be the Euclidean norm. In order to evaluate the effectiveness of the new lower bounds, the paper also develops upper bounds on Bayesian risk, which are based on optimal linear estimators. The effectiveness of the new bound is evaluated in the Poisson noise setting.
引用
收藏
页码:1985 / 2000
页数:16
相关论文
共 50 条
  • [1] Bayesian Cramer-Rao Bound for Distributed Vector Estimation with Linear Observation Model
    Shirazi, Mojtaha
    Vosoughi, Azadeh
    [J]. 2014 IEEE 25TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATION (PIMRC), 2014, : 712 - 716
  • [2] BAYESIAN CRAMER-RAO TYPE BOUND FOR RISK-UNBIASED ESTIMATION WITH DETERMINISTIC NUISANCE PARAMETERS
    Bar, Shahar
    Tabrikian, Joseph
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] Bayesian Periodic Cramer-Rao Bound
    Routtenberg, Tirza
    Tabrikian, Joseph
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1878 - 1882
  • [4] A TIGHTER BAYESIAN CRAMER-RAO BOUND
    Bacharach, Lucien
    Fritsche, Carsten
    Orguner, Umut
    Chaumette, Eric
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5277 - 5281
  • [5] Noisy Feedback Linear Precoding: A Bayesian Cramer-Rao Bound
    Housfater, Alon Shalev
    Lim, Teng Joon
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1689 - 1693
  • [6] Bayesian Cramer-Rao bound for dynamical phase offset estimation
    Bay, S.
    Herzet, C.
    Brossier, J. M.
    Barbot, J. P.
    Renaux, A.
    Geller, B.
    [J]. 2007 IEEE 8TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, VOLS 1 AND 2, 2007, : 285 - +
  • [7] CRAMER-RAO BOUND FOR RANGE ESTIMATION
    Wang, Yiyin
    Leus, Geert
    van der Veen, Alle-Jan
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3301 - 3304
  • [8] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    [J]. VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 23 - 24
  • [9] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    [J]. XV LATIN AMERICAN REGIONAL IAU MEETING, 2016, 2017, 49 : 52 - 52
  • [10] THE BAYESIAN CRAMER-RAO LOWER BOUND IN PHOTOMETRY
    Espinosa, Sebastian
    Silva, Jorge F.
    Mendez, Rene A.
    Orchard, Marcos
    [J]. VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 50 - 51