VizRank: finding informative data projections in functional genomics by machine learning

被引:23
|
作者
Leban, G
Bratko, I
Petrovic, U
Curk, T
Zupan, B [1 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana, Slovenia
[2] Jozef Stefan Inst, Ljubljana, Slovenia
[3] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
关键词
D O I
10.1093/bioinformatics/bti016
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
VizRank is a tool that finds interesting two-dimensional projections of class-labeled data. When applied to multi-dimensional functional genomics datasets, VizRank can systematically find relevant biological patterns.
引用
收藏
页码:413 / 414
页数:2
相关论文
共 50 条
  • [41] Navigating the pitfalls of applying machine learning in genomics
    Whalen, Sean
    Schreiber, Jacob
    Noble, William S.
    Pollard, Katherine S.
    [J]. NATURE REVIEWS GENETICS, 2022, 23 (03) : 169 - 181
  • [42] Finding small somatic structural variants in exome sequencing data: a machine learning approach
    Kuhn, Matthias
    Stange, Thoralf
    Herold, Sylvia
    Thiede, Christian
    Roeder, Ingo
    [J]. COMPUTATIONAL STATISTICS, 2018, 33 (03) : 1145 - 1158
  • [43] Finding small somatic structural variants in exome sequencing data: a machine learning approach
    Matthias Kuhn
    Thoralf Stange
    Sylvia Herold
    Christian Thiede
    Ingo Roeder
    [J]. Computational Statistics, 2018, 33 : 1145 - 1158
  • [44] A Knowledge-Oriented Recommendation System for Machine Learning Algorithm Finding and Data Processing
    Man Tianxing
    Baimuratov, Ildar Raisovich
    Zhukova, Natalia Alexandrovna
    [J]. INTERNATIONAL JOURNAL OF EMBEDDED AND REAL-TIME COMMUNICATION SYSTEMS (IJERTCS), 2019, 10 (04): : 20 - 38
  • [45] Filtering Informative Tweets during Emergencies: A Machine Learning Approach
    Acerbo, Flavia Sofia
    Rossi, Claudio
    [J]. PROCEEDINGS OF THE 2017 FIRST CONEXT WORKSHOP ON ICT TOOLS FOR EMERGENCY NETWORKS AND DISASTER RELIEF (I-TENDER '17), 2017, : 1 - 6
  • [46] Clustering Gait Data Using Different Machine Learning Techniques and Finding the Best Technique
    Parashar, Anubha
    Goyal, Deepak
    [J]. SMART TRENDS IN INFORMATION TECHNOLOGY AND COMPUTER COMMUNICATIONS, SMARTCOM 2016, 2016, 628 : 426 - 433
  • [47] INFORMATIVE PARALLEL SEQUENCING: HAPLOTYPE CLASSIFICATION BY MACHINE LEARNING.
    Hashmi, Ghazala
    Patel, Dipika
    Aung, Fleur
    Cano, Pedro
    Seul, Michael
    [J]. HUMAN IMMUNOLOGY, 2013, 74 : 133 - 133
  • [48] A new and informative active learning approach for support vector machine
    Hu, Lisha
    Lu, Shuxia
    Wang, Xizhao
    [J]. INFORMATION SCIENCES, 2013, 244 : 142 - 160
  • [49] INTERPRETABLE MACHINE LEARNING Mining for informative signals in biological sequences
    Alaa, Ahmed M.
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (08) : 665 - 666
  • [50] Machine Learning in Clinical Journals Moving From Inscrutable to Informative
    Singh, Karandeep
    Beam, Andrew L.
    Nallamothu, Brahmajee K.
    [J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2020, 13 (10):