Majorization in Euclidean geometry and beyond

被引:2
|
作者
Fiedler, Miroslav [1 ]
机构
[1] Acad Sci Czech Republic, Inst Comp Sci, Prague 18207 8, Czech Republic
关键词
Majorization; Doubly stochastic matrix; Euclidean simplex; Star; Regular simplex; Volume of a simplex;
D O I
10.1016/j.laa.2014.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We relate the well known notion of majorization to the behavior of a pair of simplices in a Euclidean n-space. We obtain a geometrical meaning for the determinant of the involved doubly stochastic matrix. Independently, a basic theorem about volumes of simplices contained one in another, even if of different dimensions, is proved. Some related geometric questions are also presented. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
  • [41] Euclidean geometry and physical space
    Rowe, DE
    MATHEMATICAL INTELLIGENCER, 2006, 28 (02): : 51 - 59
  • [42] Matrices and graphs in Euclidean geometry
    Fiedler, M
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2005, 14 : 51 - 58
  • [43] Geometric Algebras for Euclidean Geometry
    Charles Gunn
    Advances in Applied Clifford Algebras, 2017, 27 : 185 - 208
  • [44] Visual foundations of Euclidean geometry
    Izard, Veronique
    Pica, Pierre
    Spelke, Elizabeth S.
    COGNITIVE PSYCHOLOGY, 2022, 136
  • [45] Euclidean geometry of orthogonality of subspaces
    Prazmowska, Malgorzata
    Prazmowski, Krzysztof
    Zynel, Mariusz
    AEQUATIONES MATHEMATICAE, 2008, 76 (1-2) : 151 - 167
  • [46] A SIMPLE GEOMETRY OF EUCLIDEAN NORMS
    KARNI, S
    IEEE TRANSACTIONS ON EDUCATION, 1988, 31 (02) : 140 - 140
  • [47] On the Mobius geometry of Euclidean triangles
    Hertrich-Jeromin, Udo
    King, Alastair
    O'Hara, Jun
    ELEMENTE DER MATHEMATIK, 2013, 68 (03) : 96 - 114
  • [48] EUCLIDEAN VERSUS NON-EUCLIDEAN ASPECTS IN SPECTRAL GEOMETRY
    SUNADA, T
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1994, (116): : 235 - 250
  • [49] REFLECTION GROUPS, GENERALIZED SCHUR FUNCTIONS, AND GEOMETRY OF MAJORIZATION
    EATON, ML
    PERLMAN, MD
    ANNALS OF PROBABILITY, 1977, 5 (06): : 829 - 860
  • [50] IMPROVEMENT TO MULTIFOLD EUCLIDEAN GEOMETRY CODES
    LIN, S
    YIU, KP
    INFORMATION AND CONTROL, 1975, 28 (03): : 221 - 265