Majorization in Euclidean geometry and beyond

被引:2
|
作者
Fiedler, Miroslav [1 ]
机构
[1] Acad Sci Czech Republic, Inst Comp Sci, Prague 18207 8, Czech Republic
关键词
Majorization; Doubly stochastic matrix; Euclidean simplex; Star; Regular simplex; Volume of a simplex;
D O I
10.1016/j.laa.2014.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We relate the well known notion of majorization to the behavior of a pair of simplices in a Euclidean n-space. We obtain a geometrical meaning for the determinant of the involved doubly stochastic matrix. Independently, a basic theorem about volumes of simplices contained one in another, even if of different dimensions, is proved. Some related geometric questions are also presented. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
  • [21] New foundation of euclidean geometry
    Menger, K
    AMERICAN JOURNAL OF MATHEMATICS, 1931, 53 : 721 - 745
  • [22] Euclidean Distance Geometry and Applications
    Liberti, Leo
    Lavor, Carlile
    Maculan, Nelson
    Mucherino, Antonio
    SIAM REVIEW, 2014, 56 (01) : 3 - 69
  • [23] PAULI PRINCIPLE IN EUCLIDEAN GEOMETRY
    HARTUNG, RW
    AMERICAN JOURNAL OF PHYSICS, 1979, 47 (10) : 900 - 910
  • [24] The geometry of the quantum Euclidean space
    Fiore, G
    Madore, J
    JOURNAL OF GEOMETRY AND PHYSICS, 2000, 33 (3-4) : 257 - 287
  • [25] NON-EUCLIDEAN GEOMETRY
    DESABBAT.V
    NUOVO CIMENTO, 1965, 38 (01): : 694 - +
  • [26] AN APPROACH AND A TOOL FOR EUCLIDEAN GEOMETRY
    Bantchev, Boyko
    MATHEMATICS AND INFORMATICS, 2024, 67 (01): : 18 - 37
  • [27] Constructive geometry of Euclidean planes
    Pambuccian, V
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1998, 68 (1): : 7 - 16
  • [28] Non-euclidean geometry
    Sommerville, DMY
    NATURE, 1912, 88 : 8 - 8
  • [29] EUCLIDEAN GEOMETRY + MINKOWSKIAN CHRONOMETRY
    NOLL, W
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (02): : 129 - &
  • [30] The Lie model for Euclidean geometry
    Li, HB
    ALGEBRAIC FRAMES FOR THE PERCEPTION-ACTION CYCLE, PROCEEDINGS, 2000, 1888 : 115 - 133