Sparsity of Runge-Kutta convolution weights for the three-dimensional wave equation

被引:10
|
作者
Banjai, Lehel [1 ]
Kachanovska, Maryna [2 ]
机构
[1] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
Convolution quadrature; Runge-Kutta methods; Time-domain boundary integral equations; Wave equation; BOUNDARY INTEGRAL-EQUATIONS; DISCRETIZED OPERATIONAL CALCULUS; QUADRATURE; MULTISTEP; STABILITY;
D O I
10.1007/s10543-014-0498-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Wave propagation problems in unbounded homogeneous domains can be formulated as time-domain integral equations. An effective way to discretize such equations in time are Runge-Kutta based convolution quadratures. In this paper the behaviour of the weights of such quadratures is investigated. In particular approximate sparseness of their Galerkin discretization is analyzed. Further, it is demonstrated how these results can be used to construct and analyze the complexity of fast algorithms for the assembly of the fully discrete systems.
引用
收藏
页码:901 / 936
页数:36
相关论文
共 50 条
  • [1] Sparsity of Runge–Kutta convolution weights for the three-dimensional wave equation
    Lehel Banjai
    Maryna Kachanovska
    [J]. BIT Numerical Mathematics, 2014, 54 : 901 - 936
  • [2] On superconvergence of Runge-Kutta convolution quadrature for the wave equation
    Melenk, Jens Markus
    Rieder, Alexander
    [J]. NUMERISCHE MATHEMATIK, 2021, 147 (01) : 157 - 188
  • [3] Runge-Kutta convolution quadrature for operators arising in wave propagation
    Banjai, Lehel
    Lubich, Christian
    Melenk, Jens Markus
    [J]. NUMERISCHE MATHEMATIK, 2011, 119 (01) : 1 - 20
  • [4] On superconvergence of Runge–Kutta convolution quadrature for the wave equation
    Jens Markus Melenk
    Alexander Rieder
    [J]. Numerische Mathematik, 2021, 147 : 157 - 188
  • [5] An error analysis of Runge-Kutta convolution quadrature
    Banjai, Lehel
    Lubich, Christian
    [J]. BIT NUMERICAL MATHEMATICS, 2011, 51 (03) : 483 - 496
  • [6] Runge-Kutta Based Generalized Convolution Quadrature
    Lopez-Fernandez, Maria
    Sauter, Stefan
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [7] Symplectic partitioned Runge-Kutta method for solving the acoustic wave equation
    Ma Xiao
    Yang Ding-Hui
    Zhang Jin-Hua
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2010, 53 (08): : 1993 - 2003
  • [8] Runge-Kutta convolution quadrature for the Boundary Element Method
    Banjai, Lehel
    Messner, Matthias
    Schanz, Martin
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 245 : 90 - 101
  • [9] Runge-Kutta convolution quadrature based on Gauss methods
    Banjai, Lehel
    Ferrari, Matteo
    [J]. NUMERISCHE MATHEMATIK, 2024,
  • [10] Generalized convolution quadrature based on Runge-Kutta methods
    Lopez-Fernandez, M.
    Sauter, S.
    [J]. NUMERISCHE MATHEMATIK, 2016, 133 (04) : 743 - 779