Atomic scale indium distribution in a GaN/In0.43Ga0.57N/Al0.1Ga0.9N quantum well structure

被引:132
|
作者
Kisielowski, C [1 ]
Liliental-Weber, Z
Nakamura, S
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Mineral Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[3] Nichia Chem Ind Ltd, R&D Dept, Tokushima 774, Japan
关键词
GaN; HRTEM; quantum wells; segregation;
D O I
10.1143/JJAP.36.6932
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantitative high resolution electron microscopy (HRTEM) is used to map the indium distribution in a GaN/In0.43Ga0.57N/Al0.1Ga0.9N quantum well at the atomic scale. Samples with atomically flat surfaces were prepared for microscopy by anisotropic chemical etching. The developed preparation procedure minimizes a possible confusion of thickness variations with local compositional fluctuations in the lattice images. An irregular distribution of indium is observed that is attributed to the formation of clusters with estimated diameters of 1-2 nm. The indium concentration gradient across GaN/In0.43Ga0.57N interfaces is measured to extend typically over a distance of 1nm. It is more than twice as large across the In0.43Ga0.57N/Al0.1Ga0.9N interface. Indium segregation into the Al0.1Ga0.9N layer during crystal growth is likely to cause this unusual large width of the In0.43Ga0.57N/Al0.1Ga0.9N interfaces. This introduces an asymmetric In distribution across the quantum well with respect to the growth direction.
引用
收藏
页码:6932 / 6936
页数:5
相关论文
共 50 条
  • [21] Hole and interface traps in Mg-doped Al0.1Ga0.9N/GaN grown by metalorganic chemical vapor deposition
    Cho, HK
    Hong, CH
    Suh, EK
    Lee, HJ
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (01): : 197 - 201
  • [22] Al0.1Ga0.9N p-i-n Ultraviolet Avalanche Photodiodes With Avalanche Gain Over 106
    You, Haifan
    Wang, Haiping
    Luo, Weike
    Wang, Yiwang
    Liu, Xinghua
    Shao, Zhenguang
    Chen, Dunjun
    Lu, Hai
    Zhang, Rong
    Zheng, Youdou
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (09) : 1479 - 1482
  • [23] Ultra-wide bandgap Al0.1Ga0.9N double channel HEMT for RF applications
    Natarajan, Ramkumar
    Parthasarathy, Eswaran
    Murugapandiyan, Panneerselvam
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2022, 32 (11)
  • [24] 高响应度Al0.1Ga0.9N薄膜紫外探测器研究
    王兰喜
    陈学康
    王瑞
    曹生珠
    真空与低温, 2009, 15 (01) : 5 - 8
  • [25] Au-Free Al0.4Ga0.6N/Al0.1Ga0.9N HEMTs on Silicon Substrate With High Reverse Blocking Voltage of 2 kV
    Wu, Yinhe
    Zhang, Weihang
    Zhang, Jincheng
    Zhao, Shenglei
    Luo, Jun
    Tan, Xiaohong
    Mao, Wei
    Zhang, Chunfu
    Zhang, Yachao
    Cheng, Kai
    Liu, Zhihong
    Hao, Yue
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (09) : 4543 - 4549
  • [26] Resonant Raman scattering in (Al,Ga)N/GaN quantum well structures
    Gleize, J
    Demangeot, F
    Frandon, J
    Renucci, MA
    Kuball, M
    Grandjean, N
    Massies, J
    THIN SOLID FILMS, 2000, 364 (1-2) : 156 - 160
  • [27] Characteristics of GaN/Si(111) epitaxy grown using Al0.1Ga0.9N/AlN composite nucleation layers having different thicknesses of AlN
    Jang, SH
    Lee, SJ
    Seo, IS
    Ahn, HK
    Lee, OY
    Leem, JY
    Lee, CR
    JOURNAL OF CRYSTAL GROWTH, 2002, 241 (03) : 289 - 296
  • [28] MOVPE growth of high-quality Al0.1Ga0.9N on Si(111) substrates for UV-LEDs
    Saengkaew, Phannee
    Dadgar, Armin
    Blaesing, Juergen
    Bastek, Barbara
    Bertram, Frank
    Reiher, Fabian
    Hums, Christoph
    Noltemeyer, Martin
    Hempel, Thomas
    Veit, Peter
    Christen, Juergen
    Krost, Alois
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, SUPPL 2, 2009, 6 : S455 - S458
  • [29] Rashba spin splitting in the Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N quantum well
    Zhao Zheng-Yin
    Wang Hong-Ling
    Li Ming
    ACTA PHYSICA SINICA, 2016, 65 (09)
  • [30] Influence of pulsed laser deposited hafnium oxide thin film as gate dielectric on the fabrication of Al0.1Ga0.9N/GaN MOS-HEMT
    Yadav, Gunjan
    Jindal, Kajal
    Tomar, Monika
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 153