Ultra-wide bandgap Al0.1Ga0.9N double channel HEMT for RF applications

被引:6
|
作者
Natarajan, Ramkumar [1 ]
Parthasarathy, Eswaran [2 ]
Murugapandiyan, Panneerselvam [1 ]
机构
[1] Anil Neerukonda Inst Technol & Sci, Dept Elect & Commun Engn, Visakhapatnam, Andhra Pradesh, India
[2] SRM Inst Sci & Technol, Dept Elect & Commun Engn, Chennai, Tamil Nadu, India
关键词
breakdown voltage; double channel; HEMT; high-power switching; RF applications;
D O I
10.1002/mmce.23360
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article reports the performance analysis of gate field plate AlGaN dual channel high electron mobility transistor (HEMT). The proposed Al0.31Ga0.69N/Al0.1Ga0.9N/Al0.31Ga0.69N/Al0.1Ga0.9N heterostructures creates two quantum wells. Due to the strong coupling between two channels, device shown improved 2DEG (two-dimensional electron gas), and enhanced carrier confinement. A distinct double-hump feature is observed in both DC and RF characteristics of the proposed HEMT. For L-G = 0.8 mu m, gate field plate (L-FP = 0.5 mu m), double channel HEMT shows the breakdown voltage of 695 V and F-T/F-MAX of 30/70 GHz. Moreover, the AlGaN double channel HEMT showed a ON-state current density (I-DS) of 0.7 A/mm, transconductance (G(m)) of 117 mS/mm, and lower noise figure. The proposed AlGaN channel HEMT in this work is suitable for future high-power K-band microwave applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Electron mobility and velocity in Al0.45Ga0.55N-channel ultra-wide bandgap HEMTs at high temperatures for RF power applications
    Ye, Hansheng
    Gaevski, Mikhail
    Simin, Grigory
    Khan, Asif
    Fay, Patrick
    APPLIED PHYSICS LETTERS, 2022, 120 (10)
  • [2] Analysis of DC and RF performance of Al0.31Ga0.69N/Al0.1Ga0.9N/ β-Ga2O3 double quantum well HEMT on silicon carbide substrate
    Chinnaswamy, Sivamani
    Manickam, Rajeswari
    Vincent, Vijikala
    Thankaraj, Sujatha
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2022, 32 (06)
  • [3] Optically pumped GaN/Al0.1Ga0.9N double-heterostructure ultraviolet laser
    Aggarwal, RL
    Maki, PA
    Molnar, RJ
    Liau, ZL
    Melngailis, I
    JOURNAL OF APPLIED PHYSICS, 1996, 79 (04) : 2148 - 2150
  • [4] Small signal analysis of ultra-wide bandgap Al0.7Ga0.3N channel MESFETs
    Xue, Hao
    Razzak, Towhidur
    Hwang, Seongmo
    Coleman, Antwon
    Sohel, Shahadat Hasan
    Rajan, Siddharth
    Khan, Asif
    Lu, Wu
    MICROELECTRONIC ENGINEERING, 2021, 237
  • [5] Electrical conductivity of low-temperature-deposited Al0.1Ga0.9N interlayer
    Hayashi, Nobuaki
    Kamiyama, Satoshi
    Takeuchi, Tetsuya
    Iwaya, Motoaki
    Amano, Hiroshi
    Akasaki, Isamu
    Watanabe, Satoshi
    Kaneko, Yawara
    Yamada, Norihide
    1600, JJAP, Tokyo, Japan (39):
  • [6] Electrical conductivity of low-temperature-deposited Al0.1Ga0.9N interlayer
    Hayashi, N
    Kamiyama, S
    Takeuchi, T
    Iwaya, M
    Amano, H
    Akasaki, I
    Watanabe, S
    Kaneko, Y
    Yamada, N
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2000, 39 (12A): : 6493 - 6495
  • [7] Injection and avalanche electroluminescence of Al0.1Ga0.9N/Al0.15Ga0.85N multiple quantum wells
    Zhang, Sheng-Kun
    Wang, Wubao
    Alfano, Robert R.
    Dabiran, Amir M.
    Osinsky, Andrei
    Wowchak, Andrew M.
    Hertog, Brian
    Chow, Peter P.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2008, 14 (04) : 1010 - 1013
  • [8] OPTICAL GAIN OF OPTICALLY PUMPED AL0.1GA0.9N/GAN DOUBLE-HETEROSTRUCTURE AT ROOM-TEMPERATURE
    KIM, ST
    AMANO, H
    AKASAKI, I
    KOIDE, N
    APPLIED PHYSICS LETTERS, 1994, 64 (12) : 1535 - 1536
  • [9] Threshold Current Density of Al0.1Ga0.9N/GaN Triple Quantum Well Laser
    Qader, Kzal Mohammed
    Salman, Ebtisam M-T.
    TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY (TMREES), 2019, 157 : 75 - 83
  • [10] Ultra-wide Bandgap AlGaN Channel HEMTs for Portable Power Electronics Applications
    Revathy, A.
    Boopathi, C. S.
    INTERNATIONAL JOURNAL OF NANOELECTRONICS AND MATERIALS, 2023, 16 (02): : 301 - 312