The Unexpected Fractal Signatures in Fibonacci Chains

被引:1
|
作者
Fang, Fang [1 ]
Aschheim, Raymond [1 ]
Irwin, Klee [1 ]
机构
[1] Quantum Grav Res, Los Angeles, CA 90290 USA
关键词
Fibonacci chain; fractal signature; Fourier space; QUASI-CRYSTALS;
D O I
10.3390/fractalfract3040049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new fractal signature possessing the cardioid shape in the Mandelbrot set is presented in the Fourier space of a Fibonacci chain with two lengths, L and S, where L/S=phi. The corresponding pointwise dimension is 1.7. Various modifications, such as truncation from the head or tail, scrambling the orders of the sequence and changing the ratio of the L and S, are done on the Fibonacci chain. The resulting patterns in the Fourier space show that that the fractal signature is very sensitive to changes in the Fibonacci order but not to the L/S ratio.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [31] Lyapunov exponent for pure and random Fibonacci chains
    Velhinho, MT
    Pimentel, IR
    [J]. PHYSICAL REVIEW B, 2000, 61 (02) : 1043 - 1050
  • [32] ac conductivity of the transparent states in Fibonacci chains
    Oviedo-Roa, R
    Pérez, LA
    Wang, CM
    [J]. PHYSICAL REVIEW B, 2000, 62 (21): : 13805 - 13808
  • [33] Spectral properties of two coupled Fibonacci chains
    Moustaj, Anouar
    Roentgen, Malte
    Morfonios, Christian, V
    Schmelcher, Peter
    Smith, Cristiane Morais
    [J]. NEW JOURNAL OF PHYSICS, 2023, 25 (09):
  • [34] RENORMALIZATION-GROUP STUDY OF FIBONACCI CHAINS
    WURTZ, D
    SCHNEIDER, T
    POLITI, A
    [J]. PHYSICS LETTERS A, 1988, 129 (02) : 88 - 92
  • [35] A bijection between maximal chains in Fibonacci posets
    Kremer, D
    OHara, KM
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 78 (02) : 268 - 279
  • [36] GLOBAL SCALING PROPERTIES OF THE SPECTRUM FOR THE FIBONACCI CHAINS
    ZHENG, WM
    [J]. PHYSICAL REVIEW A, 1987, 35 (03): : 1467 - 1469
  • [37] Kondo necklace model in approximants of Fibonacci chains
    Reyes, Daniel
    Tarazona, H.
    Cuba-Supanta, G.
    Landauro, C. V.
    Espinoza, R.
    Quispe-Marcatoma, J.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 441 : 85 - 87
  • [38] RENORMALIZATION-GROUP OF RANDOM FIBONACCI CHAINS
    LOPEZ, JC
    NAUMIS, G
    ARAGON, JL
    [J]. PHYSICAL REVIEW B, 1993, 48 (17): : 12459 - 12464
  • [39] Fibonacci topological phase in arrays of anyonic chains
    Ebisu, Hiromi
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [40] Fractal construction by orthogonal projection using the Fibonacci sequence
    Grossman, GW
    [J]. FIBONACCI QUARTERLY, 1997, 35 (03): : 206 - 224