Fibonacci topological phase in arrays of anyonic chains

被引:0
|
作者
Ebisu, Hiromi [1 ]
机构
[1] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
基金
欧盟地平线“2020”;
关键词
Anyons; Chern-Simons Theories; Topological States of Matter; QUANTUM; DEFECTS; MODELS;
D O I
10.1007/JHEP04(2021)120
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Fibonacci anyon, an exotic quasi-particle excitation, plays a pivotal role in realization of a quantum computer. Starting from a SU (2)(4) topological phase, in this paper we demonstrate a way to construct a Fibonacci topological phase which has only one non-trivial excitation described by the Fibonacci anyon. We show that arrays of anyonic chains created by excitations of the SU(2)(4) phase leads to the Fibonacci phase. We further demonstrate that our theoretical propositions can be extended to other topological phases.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fibonacci topological phase in arrays of anyonic chains
    Hiromi Ebisu
    Journal of High Energy Physics, 2021
  • [2] Anyonic Chains, Topological Defects, and Conformal Field Theory
    Buican, Matthew
    Gromov, Andrey
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (03) : 1017 - 1056
  • [3] Anyonic Chains, Topological Defects, and Conformal Field Theory
    Matthew Buican
    Andrey Gromov
    Communications in Mathematical Physics, 2017, 356 : 1017 - 1056
  • [4] Topological insulating phases of non-Abelian anyonic chains
    DeGottardi, Wade
    PHYSICAL REVIEW B, 2014, 90 (07):
  • [5] Anyonic quantum spin chains: Spin-1 generalizations and topological stability
    Gils, C.
    Ardonne, E.
    Trebst, S.
    Huse, D. A.
    Ludwig, A. W. W.
    Troyer, M.
    Wang, Z.
    PHYSICAL REVIEW B, 2013, 87 (23)
  • [6] Elaborating the phase diagram of spin-1 anyonic chains
    Vernier, Eric
    Jacobsen, Jesper Lykke
    Saleur, Hubert
    SCIPOST PHYSICS, 2017, 2 (01):
  • [7] Ising anyonic topological phase of interacting fermions in one dimension
    Guther, K.
    Lang, N.
    Buechler, H. P.
    PHYSICAL REVIEW B, 2017, 96 (12)
  • [8] Topological correlation in anyonic states constrained by anyonic superselection rules
    Xu, Cheng-Qian
    Zhou, D. L.
    PHYSICAL REVIEW A, 2023, 108 (05)
  • [9] Anyonic topological flat bands
    Zhou, Xiaoqi
    Zhang, Weixuan
    Zhang, Xiangdong
    FRONTIERS OF PHYSICS, 2025, 20 (02):
  • [10] Topological invariants and anyonic propagators
    Da Cruz, W
    MODERN PHYSICS LETTERS A, 1999, 14 (28) : 1933 - 1936