Fibonacci topological phase in arrays of anyonic chains

被引:0
|
作者
Ebisu, Hiromi [1 ]
机构
[1] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
基金
欧盟地平线“2020”;
关键词
Anyons; Chern-Simons Theories; Topological States of Matter; QUANTUM; DEFECTS; MODELS;
D O I
10.1007/JHEP04(2021)120
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Fibonacci anyon, an exotic quasi-particle excitation, plays a pivotal role in realization of a quantum computer. Starting from a SU (2)(4) topological phase, in this paper we demonstrate a way to construct a Fibonacci topological phase which has only one non-trivial excitation described by the Fibonacci anyon. We show that arrays of anyonic chains created by excitations of the SU(2)(4) phase leads to the Fibonacci phase. We further demonstrate that our theoretical propositions can be extended to other topological phases.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Demonstration of Topological Robustness of Anyonic Braiding Statistics with a Superconducting Quantum Circuit
    Song, Chao
    Xu, Da
    Zhang, Pengfei
    Wang, Jianwen
    Guo, Qiujiang
    Liu, Wuxin
    Xu, Kai
    Deng, Hui
    Huang, Keqiang
    Zheng, Dongning
    Zheng, Shi-Biao
    Wang, H.
    Zhu, Xiaobo
    Lu, Chao-Yang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2018, 121 (03)
  • [42] Fibonacci Primes and Topological Biomolecular Mechanics
    Gurel, Okan
    Gurel, Demet
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 238 - 239
  • [43] Diagonal entropy and topological phase transitions in extended Kitaev chains
    Qiao, Hong
    Sun, Zheng-Hang
    Sun, Feng-Xiao
    Mu, Liang-Zhu
    He, Qiongyi
    Fan, Heng
    ANNALS OF PHYSICS, 2019, 411
  • [44] Phase diagram and entanglement of two interacting topological Kitaev chains
    Herviou, Loic
    Mora, Christophe
    Le Hur, Karyn
    PHYSICAL REVIEW B, 2016, 93 (16)
  • [45] Topological phase transition in a ladder of the dimerized Kitaev superconductor chains
    周博臻
    周斌
    Chinese Physics B, 2016, 25 (10) : 378 - 385
  • [46] Edge States and Topological Phase Transitions in Chains of Dielectric Nanoparticles
    Kruk, Sergey
    Slobozhanyuk, Alexey
    Denkova, Denitza
    Poddubny, Alexander
    Kravchenko, Ivan
    Miroshnichenko, Andrey
    Neshev, Dragomir
    Kivshar, Yuri
    SMALL, 2017, 13 (11)
  • [47] Topological phase transition in a ladder of the dimerized Kitaev superconductor chains
    Zhou, Bo-Zhen
    Zhou, Bin
    CHINESE PHYSICS B, 2016, 25 (10)
  • [48] Topological superconducting phase and Majorana bound states in Shiba chains
    Pientka, Falko
    Peng, Yang
    Glazman, Leonid
    von Oppen, Felix
    PHYSICA SCRIPTA, 2015, T164
  • [49] Experimental observation of multifractality in Fibonacci chains
    Reisner, Mattis
    Tahmi, Yanel
    Piechon, Frederic
    Kuhl, Ulrich
    Mortessagne, Fabrice
    PHYSICAL REVIEW B, 2023, 108 (06)
  • [50] The Unexpected Fractal Signatures in Fibonacci Chains
    Fang, Fang
    Aschheim, Raymond
    Irwin, Klee
    FRACTAL AND FRACTIONAL, 2019, 3 (04) : 1 - 9