Rapid formation of massive black holes in close proximity to embryonic protogalaxies

被引:94
|
作者
Regan, John A. [1 ,2 ]
Visbal, Eli [3 ,4 ]
Wise, John H. [5 ]
Haiman, Zoltan [3 ,6 ]
Johansson, Peter H. [7 ]
Bryan, Greg L. [3 ,4 ]
机构
[1] Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England
[2] Dublin City Univ, Sch Math Sci, Ctr Astrophys & Relat, Dublin, Ireland
[3] Columbia Univ, Dept Astron, 550 West 120th St, New York, NY 10027 USA
[4] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10003 USA
[5] Georgia Inst Technol, Ctr Relativist Astrophys, 837 State St, Atlanta, GA 30332 USA
[6] New York Univ, Dept Phys, New York, NY 10003 USA
[7] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland
来源
NATURE ASTRONOMY | 2017年 / 1卷 / 04期
基金
美国国家科学基金会; 芬兰科学院; 英国科学技术设施理事会;
关键词
DARK-MATTER HALOES; POPULATION III STARS; DIRECT COLLAPSE; VIRIAL TEMPERATURES; SUPERMASSIVE STARS; EARLY UNIVERSE; 1ST STARS; REDSHIFT; SIMULATIONS; GALAXIES;
D O I
10.1038/s41550-017-0075
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The appearance of supermassive black holes at very early times(1-3) in the Universe is a challenge to our understanding of star and black hole formation. The direct-collapse(4,5) black hole scenario provides a potential solution. A prerequisite for forming a direct-collapse black hole is that the formation of (much less massive) population III stars be avoided(6,7); this can be achieved by destroying H-2 by means of Lyman-Werner radiation (photons of energy around 12.6 eV). Here we show that two conditions must be met in the protogalaxy that will host the direct-collapse black hole. First, prior star formation must be delayed; this can be achieved with a background LymanWerner flux of J(BG) greater than or similar to 100J(21) (J(21) is the intensity of background radiation in units of 10(-21) erg cm(-2) s(-1) Hz(-1) sr(-1)). Second, an intense burst of Lyman-Werner radiation from a neighbouring star-bursting protogalaxy is required, just before the gas cloud undergoes gravitational collapse, to suppress star formation completely. Using high-resolution hydrodynamical simulations that include full radiative transfer, we find that these two conditions inevitably move the host protogalaxy onto the isothermal atomic cooling track, without the deleterious effects of either photo-evaporating the gas or polluting it with heavy elements. These atomically cooled, massive protogalaxies are expected ultimately to form a direct-collapse black hole of mass 10(4)-10(5)M circle dot.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Close supermassive binary black holes
    C. Martin Gaskell
    [J]. Nature, 2010, 463 : E1 - E1
  • [42] Close supermassive binary black holes
    Gaskell, C. Martin
    [J]. NATURE, 2010, 463 (7277) : E1 - E2
  • [43] Close encounters of three black holes
    Campanelli, Manuela
    Lousto, Carlos O.
    Zlochower, Yosef
    [J]. PHYSICAL REVIEW D, 2008, 77 (10):
  • [44] BLACK-HOLES IN MASSIVE CLOSE BINARY-SYSTEMS - OBSERVATIONAL DATA AND EVOLUTIONAL STATUS
    TUTUKOV, AV
    CHEREPASHCHUK, AM
    [J]. ASTRONOMICHESKII ZHURNAL, 1985, 62 (06): : 1124 - 1131
  • [45] Black holes: Close to the ultimate discovery
    Cherepashchuk, A. M.
    [J]. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES, 2013, 83 (02) : 140 - 149
  • [46] General properties of galaxy formation from triaxial protogalaxies with massive star formation.
    Berczik, P
    [J]. UNVEILING THE COSMIC INFRARED BACKGROUND, 1996, (348): : 174 - 180
  • [47] The merging history of massive black holes
    Volonteri, M
    Haardt, F
    Madau, P
    Sesana, A
    [J]. MULTIWAVELENGTH COSMOLOGY, 2004, : 227 - 230
  • [48] Astrophysical evidence for massive black holes
    Laor, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 311 (3-5): : 451 - 462
  • [49] Massive tunneling in static black holes
    Liu, Wenbiao
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2007, 122 (01): : 59 - 65
  • [50] Black holes in massive conformal gravity
    Myung, Yun Soo
    [J]. PHYSICS LETTERS B, 2014, 730 : 130 - 135