Rapid formation of massive black holes in close proximity to embryonic protogalaxies

被引:94
|
作者
Regan, John A. [1 ,2 ]
Visbal, Eli [3 ,4 ]
Wise, John H. [5 ]
Haiman, Zoltan [3 ,6 ]
Johansson, Peter H. [7 ]
Bryan, Greg L. [3 ,4 ]
机构
[1] Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England
[2] Dublin City Univ, Sch Math Sci, Ctr Astrophys & Relat, Dublin, Ireland
[3] Columbia Univ, Dept Astron, 550 West 120th St, New York, NY 10027 USA
[4] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10003 USA
[5] Georgia Inst Technol, Ctr Relativist Astrophys, 837 State St, Atlanta, GA 30332 USA
[6] New York Univ, Dept Phys, New York, NY 10003 USA
[7] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland
来源
NATURE ASTRONOMY | 2017年 / 1卷 / 04期
基金
美国国家科学基金会; 芬兰科学院; 英国科学技术设施理事会;
关键词
DARK-MATTER HALOES; POPULATION III STARS; DIRECT COLLAPSE; VIRIAL TEMPERATURES; SUPERMASSIVE STARS; EARLY UNIVERSE; 1ST STARS; REDSHIFT; SIMULATIONS; GALAXIES;
D O I
10.1038/s41550-017-0075
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The appearance of supermassive black holes at very early times(1-3) in the Universe is a challenge to our understanding of star and black hole formation. The direct-collapse(4,5) black hole scenario provides a potential solution. A prerequisite for forming a direct-collapse black hole is that the formation of (much less massive) population III stars be avoided(6,7); this can be achieved by destroying H-2 by means of Lyman-Werner radiation (photons of energy around 12.6 eV). Here we show that two conditions must be met in the protogalaxy that will host the direct-collapse black hole. First, prior star formation must be delayed; this can be achieved with a background LymanWerner flux of J(BG) greater than or similar to 100J(21) (J(21) is the intensity of background radiation in units of 10(-21) erg cm(-2) s(-1) Hz(-1) sr(-1)). Second, an intense burst of Lyman-Werner radiation from a neighbouring star-bursting protogalaxy is required, just before the gas cloud undergoes gravitational collapse, to suppress star formation completely. Using high-resolution hydrodynamical simulations that include full radiative transfer, we find that these two conditions inevitably move the host protogalaxy onto the isothermal atomic cooling track, without the deleterious effects of either photo-evaporating the gas or polluting it with heavy elements. These atomically cooled, massive protogalaxies are expected ultimately to form a direct-collapse black hole of mass 10(4)-10(5)M circle dot.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Scientists close in on black holes
    Asker, JR
    [J]. AVIATION WEEK & SPACE TECHNOLOGY, 1997, 146 (05): : 63 - 63
  • [22] Close encounters of black holes
    Giulini, D
    [J]. GALACTIC BLACK HOLE: LECTURES ON GENERAL RELATIVITY AND ASTROPHYSICS, 2003, : 178 - 206
  • [23] Black holes up close
    Narayan, Ramesh
    Quataert, Eliot
    [J]. NATURE, 2023, 615 (7953) : 597 - 604
  • [24] Black holes in massive gravity
    Babichev, Eugeny
    Brito, Richard
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (15)
  • [25] Massive black holes in galaxies
    Smith, Robert C.
    [J]. ASTRONOMY & GEOPHYSICS, 2014, 55 (02) : 26 - 30
  • [26] The origins of massive black holes
    Marta Volonteri
    Mélanie Habouzit
    Monica Colpi
    [J]. Nature Reviews Physics, 2021, 3 : 732 - 743
  • [27] Massive Stars and Black Holes
    Kholtygin, A. F.
    [J]. PHYSICS AND EVOLUTION OF MAGNETIC AND RELATED STARS, 2015, 494 : 255 - 257
  • [28] The origins of massive black holes
    Volonteri, Marta
    Habouzit, Melanie
    Colpi, Monica
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (11) : 732 - 743
  • [29] The first massive black holes
    Volonteri, Marta
    [J]. FIRST STARS IV - FROM HAYASHI TO THE FUTURE, 2012, 1480 : 289 - 296
  • [30] On black holes in massive gravity
    Berezhiani, L.
    Chkareuli, G.
    de Rham, C.
    Gabadadze, G.
    Tolley, A. J.
    [J]. PHYSICAL REVIEW D, 2012, 85 (04):