Band Gap Energy of Gradient Core-Shell Quantum Dots

被引:13
|
作者
Poulsen, Felipe [1 ]
Hansen, Thorsten [1 ]
机构
[1] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2017年 / 121卷 / 25期
关键词
SEMICONDUCTOR NANOCRYSTALS; EFFECTIVE-MASS; ELECTRON; INTERFACE; SPACE;
D O I
10.1021/acs.jpcc.7b01792
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gradient core shell quantum dots are stable and efficient light harvesting antennae with a tunable band gap. Although this type of quantum dot has significantly increased performance of quantum dots, no systematic study has been made on the effect of the thickness of the interface region on the band gap energy of the quantum dot. We solve the single band model within the effective mass approximation by numerically integrating the radial Schrodinger equation with position-dependent effective mass. We keep the substance amounts constant in an attempt to isolate the effect of the thickness of the interface region. We find that the band gap of quantum dots increases significantly when increasing the interface thickness and that this result is approximately independent of the effective mass of the quantum dot. We also find that increasing the interface thickness spreads out the radial probability density toward the edge of the quantum dot. These days, the chemical and physical properties of quantum dots are primarily tuned by the choice of materials and the size of the quantum dot. Our results complement recent reports that interface engineering may be a useful tool for tuning the band gap and charge transfer dynamics of quantum dots.
引用
收藏
页码:13655 / 13659
页数:5
相关论文
共 50 条
  • [41] Synthesis and characterization of CuInSe2 core-shell quantum dots
    Mazing, D. S.
    Karmanov, A. A.
    Matyushkin, L. B.
    Aleksandrova, O. A.
    Pronin, I. A.
    Moshnikov, V. A.
    [J]. GLASS PHYSICS AND CHEMISTRY, 2016, 42 (05) : 497 - 504
  • [42] Fabrication of the CdSeTe alloyed and CdSeTe/ZnS core-shell quantum dots
    Liang, Guo-Xi
    Zhu, Jun-Jie
    [J]. QUANTUM DOTS AND NANOSTRUCTURES: SYNTHESIS, CHARACTERIZATION, AND MODELING VIII, 2011, 7947
  • [43] Emission Processes in Colloidal PbSe/PbS Core-Shell Quantum Dots
    Maikov, Georgy I.
    Kigel, Ariel
    Sashchiuk, Aldona
    Lifshitz, Efrat
    [J]. SEMICONDUCTOR NANOSTRUCTURES TOWARDS ELECTRONIC AND OPTOELECTRONIC DEVICE APPLICATIONS II (SYMPOSIUM K, E-MRS 2009 SPRING MEETING), 2009, 6
  • [44] Temperature Dependence of the Bandgap of CdTe/CdS Core-Shell Quantum Dots
    Tynkevych, O. O.
    Vyhnan, N. M.
    Fochuk, P. M.
    Khalavka, Yu. B.
    [J]. NANOPLASMONICS, NANO-OPTICS, NANOCOMPOSITES, AND SURFACE STUDIES, 2015, 167 : 255 - 264
  • [45] Control of core-shell structure and elemental composition of binary quantum dots
    Levchenko, I.
    Rider, A. E.
    Ostrikov, K.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (19)
  • [46] Photoluminescence of core-shell CdSe/ZnS quantum dots of different sizes
    Torchynska, T. V.
    Douda, J.
    Pena Sierra, R.
    [J]. PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, SUPPL 1, 2009, 6 : S143 - S145
  • [47] Bridging Energetics and Dynamics of Exciton Trapping in Core-Shell Quantum Dots
    Righetto, Marcello
    Minotto, Alessandro
    Bozio, Renato
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01): : 896 - 902
  • [48] Temperature dependence of the photoluminescence of MnS/ZnS core-shell quantum dots
    Fang Dai-Feng
    Ding Xing
    Dai Ru-Cheng
    Zhao Zhi
    Wang Zhong-Ping
    Zhang Zeng-Ming
    [J]. CHINESE PHYSICS B, 2014, 23 (12)
  • [49] Exciton dynamics in GaAs/(Al, Ga) As core-shell nanowires with shell quantum dots
    Corfdir, Pierre
    Kuepers, Hanno
    Lewis, Ryan B.
    Flissikowski, Timur
    Grahn, Holger T.
    Geelhaar, Lutz
    Brandt, Oliver
    [J]. PHYSICAL REVIEW B, 2016, 94 (15)
  • [50] Interaction of CdSe/CdS core-shell quantum dots and Pseudomonas aeruginosa
    Aruguete, Deborah M.
    Guest, Jeremy S.
    Yu, William W.
    Love, Nancy G.
    Hochella, Michael F., Jr.
    [J]. ENVIRONMENTAL CHEMISTRY, 2010, 7 (01) : 28 - 35