Band Gap Energy of Gradient Core-Shell Quantum Dots

被引:13
|
作者
Poulsen, Felipe [1 ]
Hansen, Thorsten [1 ]
机构
[1] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2017年 / 121卷 / 25期
关键词
SEMICONDUCTOR NANOCRYSTALS; EFFECTIVE-MASS; ELECTRON; INTERFACE; SPACE;
D O I
10.1021/acs.jpcc.7b01792
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gradient core shell quantum dots are stable and efficient light harvesting antennae with a tunable band gap. Although this type of quantum dot has significantly increased performance of quantum dots, no systematic study has been made on the effect of the thickness of the interface region on the band gap energy of the quantum dot. We solve the single band model within the effective mass approximation by numerically integrating the radial Schrodinger equation with position-dependent effective mass. We keep the substance amounts constant in an attempt to isolate the effect of the thickness of the interface region. We find that the band gap of quantum dots increases significantly when increasing the interface thickness and that this result is approximately independent of the effective mass of the quantum dot. We also find that increasing the interface thickness spreads out the radial probability density toward the edge of the quantum dot. These days, the chemical and physical properties of quantum dots are primarily tuned by the choice of materials and the size of the quantum dot. Our results complement recent reports that interface engineering may be a useful tool for tuning the band gap and charge transfer dynamics of quantum dots.
引用
收藏
页码:13655 / 13659
页数:5
相关论文
共 50 条
  • [21] Core-shell polyaniline functionalized carbon quantum dots for supercapacitor
    Kakaei, Karim
    Khodadoost, Somayyeh
    Gholipour, Maryam
    Shouraei, Nazila
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 148
  • [22] HAADF-STEM for the analysis of core-shell quantum dots
    Fernandez-Delgado, N.
    Herrera, M.
    Pizarro, J.
    Galindo, P.
    Molina, S., I
    [J]. JOURNAL OF MATERIALS SCIENCE, 2018, 53 (21) : 15226 - 15236
  • [23] Suppressed blinking in CdTe/CdSe core-shell quantum dots
    Kloper, Viki
    Osovsky, Ruth
    Cheskis, Dima
    Sashchiuk, Aldona
    Lifshitz, Efrat
    [J]. PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 12, 2009, 6 (12): : 2719 - +
  • [24] Auger process in CdS/ZnS core-shell quantum dots
    Zgaren, Ibtissem
    Balti, Jalloul
    Jaziri, Sihem
    [J]. SOLID STATE COMMUNICATIONS, 2011, 151 (23) : 1743 - 1748
  • [25] Electronic structure of PbSe/PbS core-shell quantum dots
    Bartnik, A. C.
    Wise, F. W.
    Kigel, A.
    Lifshitz, E.
    [J]. PHYSICAL REVIEW B, 2007, 75 (24)
  • [26] In situ synthesis of CdTe/CdSe core-shell quantum dots
    Seo, Heonjin
    Kim, Sang-Wook
    [J]. CHEMISTRY OF MATERIALS, 2007, 19 (11) : 2715 - 2717
  • [27] Photoluminescence properties of PbSe/PbS core-shell quantum dots
    Maikov, Georgy I.
    Vaxenburg, Roman
    Yanover, Diana
    Kigel, Ariel
    Sashchiuk, Aldona
    Lifshitz, Efrat
    [J]. PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 12, 2009, 6 (12): : 2716 - 2718
  • [28] Role of Interfacial Engineering of "Giant" Core-Shell Quantum Dots
    Selopal, Gurpreet Singh
    Abdelkarim, Omar
    Kumar, Pawan
    Jin, Lei
    Liu, Jiabin
    Zhao, Haiguang
    Yurtsever, Aycan
    Vidal, Francois
    Wang, Zhiming M.
    Rosei, Federico
    [J]. ACS APPLIED ENERGY MATERIALS, 2022, 5 (02) : 1447 - 1459
  • [29] OPTICAL VIBRATION MODES IN SPHERICAL CORE-SHELL QUANTUM DOTS
    Xing, Y.
    Liang, X. X.
    Wang, Z. P.
    [J]. MODERN PHYSICS LETTERS B, 2013, 27 (18):
  • [30] "Flash" Synthesis of CdSe/CdS Core-Shell Quantum Dots
    Cirillo, Marco
    Aubert, Tangi
    Gomes, Raquel
    Van Deun, Rik
    Emplit, Philippe
    Biermann, Amelie
    Lange, Holger
    Thomsen, Christian
    Brainis, Edouard
    Hens, Zeger
    [J]. CHEMISTRY OF MATERIALS, 2014, 26 (02) : 1154 - 1160