The Angstrom Project Alert System: Real-time detection of extragalactic microlensing

被引:12
|
作者
Darnley, M. J. [1 ]
Kerins, E.
Newsam, A.
Duke, J. P.
Gould, A.
Han, C.
Ibrahimov, M. A.
Im, M.
Jeon, Y.-B.
Karimov, R. G.
Lee, C.-U.
Park, B.-G.
机构
[1] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England
[2] Univ Manchester, Jodrell Bank Observ, Macclesfield SK11 9DL, Cheshire, England
[3] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA
[4] Chungbuk Natl Univ, Dept Phys, Chonju 361763, South Korea
[5] Uzbek Acad Sci, Ulugh Beg Astron Inst, Tashkent 700135, Uzbekistan
[6] Seoul Natl Univ, FPRP, Dept Phys & Astron, Seoul 151742, South Korea
[7] Korea Astron & Space Sci Inst, Taejon 305348, South Korea
来源
ASTROPHYSICAL JOURNAL | 2007年 / 661卷 / 01期
基金
英国科学技术设施理事会;
关键词
galaxies : individual (M31); gravitational lensing; techniques : photometric;
D O I
10.1086/518600
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Angstrom Project is undertaking an optical survey of stellar microlensing events across the bulge region of the Andromeda galaxy ( M31) using a distributed network of 2 m class telescopes. The Angstrom Project Alert System ( APAS) has been developed to identify candidate microlensing and transient events in real time, using data from the Liverpool and Faulkes North robotic telescopes. This is the first time that real-time microlensing discovery has been attempted outside of the Milky Way and its satellite galaxies. The APAS is designed to enable follow-up studies of M31 microlensing systems, including searches for gas giant planets in M31. Here we describe the APAS, and we present a few example light curves obtained during its commissioning phase that clearly demonstrate its real-time capability to identify microlensing candidates as well as other transient sources.
引用
收藏
页码:L45 / L48
页数:4
相关论文
共 50 条
  • [31] A Real-Time Human Detection System for Video
    Zeng, Bobo
    Wang, Guijin
    Lin, Xinggang
    Liu, Chunxiao
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2012, E95D (07): : 1979 - 1988
  • [32] A Real-Time Smart Display Detection System
    Shi, Shu
    Barrus, John
    [J]. PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 1049 - 1052
  • [33] Design of a system for real-time worm detection
    Madhusudan, B
    Lockwood, J
    [J]. 12TH ANNUAL IEEE SYMPOSIUM ON HIGH PERFORMANCE INTERCONNECTS, PROCEEDINGS, 2004, : 77 - 83
  • [34] Modular Real-Time Face Detection System
    Wang K.
    Song Z.
    Sheng M.
    He P.
    Tang Z.
    [J]. Annals of Data Science, 2015, 2 (3) : 317 - 333
  • [35] A real-time oriented system for vehicle detection
    Bertozzi, M
    Broggi, A
    Castelluccio, S
    [J]. JOURNAL OF SYSTEMS ARCHITECTURE, 1997, 43 (1-5) : 317 - 325
  • [36] Robust Real-time Intrusion Detection System
    Kim, Byung-Joo
    Kim, Il-Kon
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2005, 1 (01): : 9 - 13
  • [37] DETECTION OF CYCLE IN REAL-TIME SYSTEM SPECIFICATION
    KIRNER, TG
    [J]. SIGPLAN NOTICES, 1994, 29 (07): : 43 - 50
  • [38] A Heterogeneous System for Real-Time Detection with AdaBoost
    Xu, Zheng
    Shi, Runbin
    Sun, Zhihao
    Li, Yaqi
    Zhao, Yuanjia
    Wu, Chenjian
    [J]. PROCEEDINGS OF 2016 IEEE 18TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS; IEEE 14TH INTERNATIONAL CONFERENCE ON SMART CITY; IEEE 2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2016, : 839 - 843
  • [39] Real-time embedded eye detection system
    Ruiz-Beltran, Camilo A.
    Romero-Garces, Adrian
    Gonzalez, Martin
    Sanchez Pedraza, Antonio
    Rodriguez-Fernandez, Juan A.
    Bandera, Antonio
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 194
  • [40] An SoC System for Real-Time Edge Detection
    Yamini, Vanama
    Hussain, Syed Ali
    Sekhar, G. Chandra
    Kumar, P. Avinash
    Lehitha, P.
    Teja, B. Sree Venkata
    Samanta, Swagata
    Sanki, Pradyut Kumar
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2024, : 6395 - 6402