Approximately counting Hamilton paths and cycles in dense graphs

被引:20
|
作者
Dyer, M [1 ]
Frieze, A
Jerrum, M
机构
[1] Univ Leeds, Sch Comp Studies, Leeds LS2 9JT, W Yorkshire, England
[2] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[3] Univ Edinburgh, Dept Comp Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[4] NEC Res Inst, Princeton, NJ 08540 USA
关键词
Hamilton cycles; fpras; dense;
D O I
10.1137/S009753979426112X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe fully polynomial randomized approximation schemes for the problems of determining the number of Hamilton paths and cycles in an n-vertex graph with minimum degree (1/2 + alpha)n, for any fixed alpha > 0. We show that the exact counting problems are #P-complete. We also describe fully polynomial randomized approximation schemes for counting paths and cycles of all sizes in such graphs.
引用
收藏
页码:1262 / 1272
页数:11
相关论文
共 50 条
  • [41] Counting Hamilton Cycles in Dirac Hypergraphs
    Asaf Ferber
    Liam Hardiman
    Adva Mond
    Combinatorica, 2023, 43 : 665 - 680
  • [42] On approximately counting colorings of small degree graphs
    Bubley, Russ
    Dyer, Martin
    Greenhill, Catherine
    Jerrum, Mark
    SIAM Journal on Computing, 29 (02): : 387 - 400
  • [43] On approximately counting colorings of small degree graphs
    Bubley, R
    Dyer, M
    Greenhill, C
    Jerrum, M
    SIAM JOURNAL ON COMPUTING, 1999, 29 (02) : 387 - 400
  • [44] Counting Hamilton Decompositions of Oriented Graphs
    Ferber, Asaf
    Long, Eoin
    Sudakov, Benny
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (22) : 6908 - 6933
  • [45] Hamilton paths in generalized Petersen graphs
    Richter, R. Bruce
    DISCRETE MATHEMATICS, 2013, 313 (12) : 1338 - 1341
  • [46] Hamilton paths in certain arithmetic graphs
    Russell, PA
    ARS COMBINATORIA, 2005, 77 : 305 - 309
  • [47] MODULARITY OF CYCLES AND PATHS IN GRAPHS
    ARKIN, EM
    PAPADIMITRIOU, CH
    YANNAKAKIS, M
    JOURNAL OF THE ACM, 1991, 38 (02) : 255 - 274
  • [48] CYCLES AND PATHS IN JACOBSON GRAPHS
    Azimi, A.
    Farrokhi, M. D. G.
    ARS COMBINATORIA, 2017, 134 : 61 - 74
  • [49] Paths and cycles in colored graphs
    Broersma, Hajo
    Li, Xueliang
    Woeginger, Gerhard
    Zhang, Shenggui
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 31 : 299 - 311
  • [50] PATHS AND CYCLES IN ORIENTED GRAPHS
    张存铨
    A Monthly Journal of Science, 1981, (10) : 865 - 868