Approximately counting Hamilton paths and cycles in dense graphs

被引:20
|
作者
Dyer, M [1 ]
Frieze, A
Jerrum, M
机构
[1] Univ Leeds, Sch Comp Studies, Leeds LS2 9JT, W Yorkshire, England
[2] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[3] Univ Edinburgh, Dept Comp Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[4] NEC Res Inst, Princeton, NJ 08540 USA
关键词
Hamilton cycles; fpras; dense;
D O I
10.1137/S009753979426112X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe fully polynomial randomized approximation schemes for the problems of determining the number of Hamilton paths and cycles in an n-vertex graph with minimum degree (1/2 + alpha)n, for any fixed alpha > 0. We show that the exact counting problems are #P-complete. We also describe fully polynomial randomized approximation schemes for counting paths and cycles of all sizes in such graphs.
引用
收藏
页码:1262 / 1272
页数:11
相关论文
共 50 条
  • [31] Hamilton cycles in pseudorandom graphs
    Glock, Stefan
    Correia, David Munha
    Sudakov, Benny
    ADVANCES IN MATHEMATICS, 2024, 458
  • [32] HAMILTON CYCLES AND EIGENVALUES OF GRAPHS
    VANDENHEUVEL, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 : 723 - 730
  • [33] HAMILTON CYCLES IN CUBIC GRAPHS
    Chia, G. L.
    Ong, Siew-Hui
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (03) : 251 - 259
  • [34] Hamilton cycles and eigenvalues of graphs
    van, den Heuvel, J.
    Linear Algebra and Its Applications, 1995, 226-228
  • [35] Hamilton paths and cycles in vertex-transitive graphs of order 6p
    Kutnar, Klavdija
    Sparl, Primoz
    DISCRETE MATHEMATICS, 2009, 309 (17) : 5444 - 5460
  • [36] Collapsible graphs and Hamilton cycles of line graphs
    Li, Xiangwen
    Xiong, Yan
    DISCRETE APPLIED MATHEMATICS, 2015, 194 : 132 - 142
  • [37] Heavy and light paths and Hamilton cycles
    Diskin, Sahar
    Elboim, Dor
    INFORMATION PROCESSING LETTERS, 2023, 182
  • [38] Hamilton cycles in random graphs and directed graphs
    Cooper, C
    Frieze, A
    RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (04) : 369 - 401
  • [39] Counting Hamilton Cycles in Dirac Hypergraphs
    Ferber, Asaf
    Hardiman, Liam
    Mond, Adva
    COMBINATORICA, 2023, 43 (4) : 665 - 680
  • [40] Counting Hamilton cycles in Dirac hypergraphs
    Glock, Stefan
    Gould, Stephen
    Joos, Felix
    Kuehn, Daniela
    Osthus, Deryk
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (04): : 631 - 653