On Locating-Chromatic Number for Graphs with Dominant Vertices

被引:8
|
作者
Welyyanti, Des [1 ,2 ]
Baskoro, Edy Tri [1 ]
Simanjuntak, Rinovia [1 ]
Uttunggadewa, Saladin [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Div, Jl Ganesa 10, Bandung 40132, Indonesia
[2] Andalas Unvers, Fac Math & Nat Sci, Limau Manis, Padang, Indonesia
关键词
locating-chromatic number; dominant vertex; coloring; color;
D O I
10.1016/j.procs.2015.12.081
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let c be a k-coloring of a (not necessary connected) graph H. Let Pi = {C-1, C-2, ..., C-k} be the partition of V(H) induced by c, where C-i is partition class receiving color i. The color code c(Pi) (v) of a vertex v epsilon H is the ordered k-tuple (d(v, C-1), d(v, C-2), ..., d(v, C-k)), where d(v, C-i) = min{d(v, x)| x epsilon C-i} for all i epsilon [1, k]. If all vertices of H have distinct color codes, then c is called a locating k-coloring of H. The locating-chromatic number of H, denoted by chi(L)' (H), is the smallest k such that H admits a locatingcoloring with k colors. If there is no integer k satisfying the above conditions, then we say that chi(L)' (H) = infinity. Note that if H is a connected graph, then chi(L)' (H) = chi(L) (H). In this paper, we provide upper bounds for the locating-chromatic numbers of connected graphs obtained from disconnected graphs where each component contains a single dominant vertex. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:89 / 92
页数:4
相关论文
共 50 条
  • [1] The Locating-Chromatic Number of Origami Graphs
    Irawan, Agus
    Asmiati, Asmiati
    Zakaria, La
    Muludi, Kurnia
    [J]. ALGORITHMS, 2021, 14 (06)
  • [2] The Locating-Chromatic Number of Certain Halin Graphs
    Purwasih, Ira Apni
    Baskoro, Edy Tri
    [J]. 5TH INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM5), 2012, 1450 : 342 - 345
  • [3] On the locating-chromatic number for graphs with two homogenous components
    Welyyanti, Des
    Baskoro, Edy Tri
    Simajuntak, Rinovia
    Uttunggadewa, Saladin
    [J]. ASIAN MATHEMATICAL CONFERENCE 2016 (AMC 2016), 2017, 893
  • [4] Trees with Certain Locating-Chromatic Number
    Syofyan, Dian Kastika
    Baskoro, Edy Tri
    Assiyatun, Hilda
    [J]. JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2016, 48 (01) : 39 - 47
  • [5] Locating-Chromatic Number of Amalgamation of Stars
    Asmiati
    Assiyatun, H.
    Baskoro, E. T.
    [J]. JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2011, 43 (01) : 1 - 8
  • [6] Characterizing all graphs containing cycles with locating-chromatic number 3
    Asmiati
    Baskoro, E. T.
    [J]. 5TH INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM5), 2012, 1450 : 351 - 357
  • [7] ON THE LOCATING-CHROMATIC NUMBER OF HOMOGENEOUS LOBSTERS
    Syofyan, Dian Kastika
    Baskoro, Edy Tri
    Assiyatun, Hilda
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (03) : 245 - 252
  • [8] Graphs of order n with locating-chromatic number n-1
    Chartrand, G
    Erwin, D
    Henning, MA
    Slater, PJ
    Zhang, P
    [J]. DISCRETE MATHEMATICS, 2003, 269 (1-3) : 65 - 79
  • [9] The Locating-Chromatic Number of Binary Trees
    Syofyan, Dian Kastika
    Baskoro, Edy Tri
    Assiyatun, Hilda
    [J]. 2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 79 - 83
  • [10] CERTAIN OPERATION OF GENERALIZED PETERSEN GRAPHS HAVING LOCATING-CHROMATIC NUMBER FIVE
    Irawan, Agus
    Asmiati
    Suharsono, S.
    Muludi, Kurnia
    Zakaria, La
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2020, 24 (02): : 83 - 97