On Locating-Chromatic Number for Graphs with Dominant Vertices

被引:8
|
作者
Welyyanti, Des [1 ,2 ]
Baskoro, Edy Tri [1 ]
Simanjuntak, Rinovia [1 ]
Uttunggadewa, Saladin [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Div, Jl Ganesa 10, Bandung 40132, Indonesia
[2] Andalas Unvers, Fac Math & Nat Sci, Limau Manis, Padang, Indonesia
关键词
locating-chromatic number; dominant vertex; coloring; color;
D O I
10.1016/j.procs.2015.12.081
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let c be a k-coloring of a (not necessary connected) graph H. Let Pi = {C-1, C-2, ..., C-k} be the partition of V(H) induced by c, where C-i is partition class receiving color i. The color code c(Pi) (v) of a vertex v epsilon H is the ordered k-tuple (d(v, C-1), d(v, C-2), ..., d(v, C-k)), where d(v, C-i) = min{d(v, x)| x epsilon C-i} for all i epsilon [1, k]. If all vertices of H have distinct color codes, then c is called a locating k-coloring of H. The locating-chromatic number of H, denoted by chi(L)' (H), is the smallest k such that H admits a locatingcoloring with k colors. If there is no integer k satisfying the above conditions, then we say that chi(L)' (H) = infinity. Note that if H is a connected graph, then chi(L)' (H) = chi(L) (H). In this paper, we provide upper bounds for the locating-chromatic numbers of connected graphs obtained from disconnected graphs where each component contains a single dominant vertex. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:89 / 92
页数:4
相关论文
共 50 条
  • [41] A BOUND FOR THE LOCATING CHROMATIC NUMBER OF TREES
    Behtoei, Ali
    Anbarloei, Mahdi
    [J]. TRANSACTIONS ON COMBINATORICS, 2015, 4 (01) : 31 - 41
  • [42] The Locating Chromatic Number of Book Graph
    Inayah, Nur
    Aribowo, Wisnu
    Yahya, Maiyudi Mariska Windra
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [43] Locating Chromatic Number of Palm Graph
    Welyyanti, Des
    Taufiqurrahman, Ibrahim
    Permana, Dony
    Zahra, Rifda Sasmi
    Yulianti, Lyra
    [J]. IAENG International Journal of Applied Mathematics, 2024, 54 (10) : 1969 - 1975
  • [44] Graphs whose circular chromatic number equals the chromatic number
    Zhu, XD
    [J]. COMBINATORICA, 1999, 19 (01) : 139 - 149
  • [45] The difference between game chromatic number and chromatic number of graphs
    Matsumoto, Naoki
    [J]. INFORMATION PROCESSING LETTERS, 2019, 151
  • [46] Graphs Whose Circular Chromatic Number Equals the Chromatic Number
    Xuding Zhu
    [J]. Combinatorica, 1999, 19 : 139 - 149
  • [47] On the difference between chromatic number and dynamic chromatic number of graphs
    Ahadi, A.
    Akbari, S.
    Dehghan, A.
    Ghanbari, M.
    [J]. DISCRETE MATHEMATICS, 2012, 312 (17) : 2579 - 2583
  • [48] On group chromatic number of graphs
    Lai, HJ
    Li, XW
    [J]. GRAPHS AND COMBINATORICS, 2005, 21 (04) : 469 - 474
  • [49] On Indicated Chromatic Number of Graphs
    S. Francis Raj
    R. Pandiya Raj
    H. P. Patil
    [J]. Graphs and Combinatorics, 2017, 33 : 203 - 219
  • [50] MONOTONE CHROMATIC NUMBER OF GRAPHS
    Saleh, Anwar
    Muthana, Najat
    Al-Shammakh, Wafa
    Alashwali, Hanaa
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (06): : 1108 - 1122