Graphs of order n with locating-chromatic number n-1

被引:31
|
作者
Chartrand, G [1 ]
Erwin, D
Henning, MA
Slater, PJ
Zhang, P
机构
[1] Western Michigan Univ, Dept Math & Stat, Kalamazoo, MI 49008 USA
[2] Trinity Coll, Dept Math, Hartford, CT 06106 USA
[3] Univ Natal, Sch Math, ZA-3209 Scottsville, South Africa
[4] Univ Alabama, Dept Math Sci, Huntsville, AL 35899 USA
关键词
locating set; locating-coloring; locating-chromatic number;
D O I
10.1016/S0012-365X(02)00829-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a coloring c of a connected graph G, let Pi = (C-1, C-2,..., C-k) be an ordered partition of V(G) into the resulting color classes. For a vertex upsilon of G, the color code c(Pi)(upsilon) of v is the ordered k-tuple (d(upsilon, C-1), d(upsilon, C-2),..., d(upsilon, C-k)), where d(upsilon, C-i) = min{d(upsilon, x): x is an element of C-i} for 1 less than or equal to i less than or equal to k. If distinct vertices have distinct color codes, then c is called a locating-coloring. The locating-chromatic number chi(L)(G) is the minimum number of colors in a locating-coloring of G. It is shown that if G is a connected graph of order n greater than or equal to 3 containing an induced complete multipartite subgraph of order n - 1, then (n + 1)/2 less than or equal to chi(L)(G) n and, furthermore, for each integer k with (n + 1)/2 less than or equal to k less than or equal to n, there exists such a graph G of order n with chi(L)(G) = k. Graphs of order n containing an induced complete multipartite subgraph of order n - 1 are used to characterize all connected graphs of order n greater than or equal to 4 with locating-chromatic number n - 1. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:65 / 79
页数:15
相关论文
共 50 条
  • [1] The Locating-Chromatic Number of Origami Graphs
    Irawan, Agus
    Asmiati, Asmiati
    Zakaria, La
    Muludi, Kurnia
    [J]. ALGORITHMS, 2021, 14 (06)
  • [2] On Locating-Chromatic Number for Graphs with Dominant Vertices
    Welyyanti, Des
    Baskoro, Edy Tri
    Simanjuntak, Rinovia
    Uttunggadewa, Saladin
    [J]. 2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 89 - 92
  • [3] The Locating-Chromatic Number of Certain Halin Graphs
    Purwasih, Ira Apni
    Baskoro, Edy Tri
    [J]. 5TH INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM5), 2012, 1450 : 342 - 345
  • [4] ON LOCATING-CHROMATIC NUMBER OF COMPLETE n-ARY TREE
    Welyyanti, Des
    Baskoro, Edy Tri
    Simanjuntak, Rinovia
    Uttunggadewa, Saladin
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (03) : 309 - 315
  • [5] On the locating-chromatic number for graphs with two homogenous components
    Welyyanti, Des
    Baskoro, Edy Tri
    Simajuntak, Rinovia
    Uttunggadewa, Saladin
    [J]. ASIAN MATHEMATICAL CONFERENCE 2016 (AMC 2016), 2017, 893
  • [6] Trees with Certain Locating-Chromatic Number
    Syofyan, Dian Kastika
    Baskoro, Edy Tri
    Assiyatun, Hilda
    [J]. JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2016, 48 (01) : 39 - 47
  • [7] Locating-Chromatic Number of Amalgamation of Stars
    Asmiati
    Assiyatun, H.
    Baskoro, E. T.
    [J]. JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2011, 43 (01) : 1 - 8
  • [8] Characterizing all graphs containing cycles with locating-chromatic number 3
    Asmiati
    Baskoro, E. T.
    [J]. 5TH INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM5), 2012, 1450 : 351 - 357
  • [9] ON THE LOCATING-CHROMATIC NUMBER OF HOMOGENEOUS LOBSTERS
    Syofyan, Dian Kastika
    Baskoro, Edy Tri
    Assiyatun, Hilda
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (03) : 245 - 252
  • [10] The Locating-Chromatic Number of Binary Trees
    Syofyan, Dian Kastika
    Baskoro, Edy Tri
    Assiyatun, Hilda
    [J]. 2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 79 - 83