Bayesian variable selection for logistic regression

被引:2
|
作者
Tian, Yiqing [1 ]
Bondell, Howard D. [1 ,2 ]
Wilson, Alyson [1 ]
机构
[1] North Carolina State Univ, Dept Stat, Raleigh, NC USA
[2] Univ Melbourne, Sch Math & Stat, Peter Hall Bldg, Parkville, Vic 3010, Australia
关键词
joint credible region; Laplace prior; LASSO; Normal-gamma prior; NONCONCAVE PENALIZED LIKELIHOOD; MODEL; REGULARIZATION; INFERENCE;
D O I
10.1002/sam.11428
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A key issue when using Bayesian variable selection for logistic regression is choosing an appropriate prior distribution. This can be particularly difficult for high-dimensional data where complete separation will naturally occur in the high-dimensional space. We propose the use of the Normal-Gamma prior with recommendations on calibration of the hyper-parameters. We couple this choice with the use of joint credible sets to avoid performing a search over the high-dimensional model space. The approach is shown to outperform other methods in high-dimensional settings, especially with highly correlated data. The Bayesian approach allows for a natural specification of the hyper-parameters.
引用
收藏
页码:378 / 393
页数:16
相关论文
共 50 条
  • [21] Bayesian Variable Selection for Survival Regression in Genetics
    Tachmazidou, Ioanna
    Johnson, Michael
    De Iorio, Maria
    [J]. GENETIC EPIDEMIOLOGY, 2010, 34 (08) : 985 - 985
  • [22] Bayesian Variable Selection for Survival Regression in Genetics
    Tachmazidou, Ioanna
    Johnson, Michael R.
    De Iorio, Maria
    [J]. GENETIC EPIDEMIOLOGY, 2010, 34 (07) : 689 - 701
  • [23] Bayesian variable selection in binary quantile regression
    Oh, Man-Suk
    Park, Eun Sug
    So, Beong-Soo
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 118 : 177 - 181
  • [24] Nonparametric regression using Bayesian variable selection
    Smith, M
    Kohn, R
    [J]. JOURNAL OF ECONOMETRICS, 1996, 75 (02) : 317 - 343
  • [25] An objective Bayesian procedure for variable selection in regression
    Giron, F. Javier
    Moreno, Elias
    Martinez, M. Lina
    [J]. ADVANCES IN DISTRIBUTION THEORY, ORDER STATISTICS, AND INFERENCE, 2006, : 389 - +
  • [26] Bayesian variable and transformation selection in linear regression
    Hoeting, JA
    Raftery, AE
    Madigan, D
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (03) : 485 - 507
  • [27] Bayesian Approximate Kernel Regression With Variable Selection
    Crawford, Lorin
    Wood, Kris C.
    Zhou, Xiang
    Mukherjee, Sayan
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1710 - 1721
  • [28] A Forward Variable Selection Method for Fuzzy Logistic Regression
    Fatemeh Salmani
    Seyed Mahmoud Taheri
    Alireza Abadi
    [J]. International Journal of Fuzzy Systems, 2019, 21 : 1259 - 1269
  • [29] A Forward Variable Selection Method for Fuzzy Logistic Regression
    Salmani, Fatemeh
    Taheri, Seyed Mahmoud
    Abadi, Alireza
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (04) : 1259 - 1269
  • [30] Variable Selection for Sparse Logistic Regression with Grouped Variables
    Zhong, Mingrui
    Yin, Zanhua
    Wang, Zhichao
    [J]. MATHEMATICS, 2023, 11 (24)