Absence Seizure Epilepsy Detection using linear and nonlinear EEG analysis methods

被引:0
|
作者
Sakkalis, Vangelis [1 ]
Giannakakis, Giorgos [1 ]
Farmaki, Christina [1 ]
Mousas, Abdou [1 ]
Pediaditis, Matthew [1 ]
Vorgia, Pelagia [3 ]
Tsiknakis, Manolis [2 ]
机构
[1] Fdn Res & Technol, Inst Comp Sci, Iraklion 71110, Greece
[2] Technol Educ Inst Crete, Dept Appl Informat & Multimed, Iraklion, Greece
[3] Univ Crete, Fac Med, Dept Mother & Child Hlth, Iraklion, Greece
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study, we investigated three measures capable of detecting absence seizures with increased sensitivity based on different underlying assumptions. Namely, an information-based method known as Approximate Entropy, a nonlinear alternative (Order Index), and a linear variance analysis approach. The results on the long-term EEG data suggest increased accuracy in absence seizure detection achieving sensitivity as high as 97.33% with no further application of any sophisticated classification scheme.
引用
收藏
页码:6333 / 6336
页数:4
相关论文
共 50 条
  • [1] EEG-based Absence Seizure Detection Methods
    Liang, Sheng-Fu
    Chang, Wan-Lin
    Chiueh, Herming
    [J]. 2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [2] Epilepsy Seizure Detection Using EEG signals
    Lasefr, Zakareya
    Ayyalasomayajula, Sai Shiva V. N. R.
    Elleithy, Khaled
    [J]. 2017 IEEE 8TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (UEMCON), 2017, : 162 - 167
  • [3] Non-linear classifiers applied to EEG analysis for epilepsy seizure detection
    Martinez-Del-Rincon, Jesus
    Santofimia, Maria J.
    del Toro, Xavier
    Barba, Jesus
    Romero, Francisca
    Navas, Patricia
    Lopez, Juan C.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2017, 86 : 99 - 112
  • [4] Epileptic Seizure Detection Using Non Linear Analysis of EEG
    Vijith, V. S.
    Jacob, Jisu Elsa
    Iype, Thomas
    Gopakumar, K.
    Yohannan, Doris George
    [J]. 2016 INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT), VOL 3, 2015, : 225 - 230
  • [5] A review on the pattern detection methods for epilepsy seizure detection from EEG signals
    Sharmila, Ashok
    Geethanjali, Purusothaman
    [J]. BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2019, 64 (05): : 507 - 517
  • [6] An Intelligent Method for Epilepsy Seizure Detection Based on Hybrid Nonlinear EEG Data Features Using Adaptive Signal Decomposition Methods
    Sandeep Singh
    Harjot Kaur
    [J]. Circuits, Systems, and Signal Processing, 2023, 42 : 2782 - 2803
  • [7] An Intelligent Method for Epilepsy Seizure Detection Based on Hybrid Nonlinear EEG Data Features Using Adaptive Signal Decomposition Methods
    Singh, Sandeep
    Kaur, Harjot
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (05) : 2782 - 2803
  • [8] Detection of seizure onset in childhood absence epilepsy
    Aud'hui, M.
    Kachenoura, A.
    Yochum, M.
    Kaminska, A.
    Nabbout, R.
    Wendling, F.
    Kuchenbuch, M.
    Benquet, P.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2024, 163 : 267 - 279
  • [9] A deep learning approach for epilepsy seizure detection using EEG signals
    Kaushik, Manoj
    Singh, Divyanshu
    Kishore-Dutta, Malay
    Travieso, Carlos M.
    [J]. TECNOLOGIA EN MARCHA, 2022, 35
  • [10] An Efficient Automated Technique for Epilepsy Seizure Detection Using EEG signals
    Lasefr, Zakareya
    Ayyalasomayajula, Sai Shiva V. N. R.
    Elleithy, Khaled
    [J]. 2017 IEEE 8TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (UEMCON), 2017, : 76 - 82