A deep learning approach for epilepsy seizure detection using EEG signals

被引:0
|
作者
Kaushik, Manoj [1 ]
Singh, Divyanshu [1 ]
Kishore-Dutta, Malay [1 ]
Travieso, Carlos M. [2 ]
机构
[1] Dr APJ Abdul Kalam Tech Univ, Ctr Adv Studies, Lucknow, India
[2] Univ Las Palmas Gran Canaria, IDeTIC, Signals & Commun Dept, Las Palmas Gran Canaria, Spain
来源
TECNOLOGIA EN MARCHA | 2022年 / 35卷
关键词
EEG Signal; epilepsy detection; Convolutional Neural network; pattern recognition;
D O I
10.18845/tm.v35i8.6461
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electroencephalogram (EEG) is an effective non-invasive way to detect sudden changes in neural brain activity, which generally occurs due to excessive electric discharge in the brain cells. EEG signals could be helpful in imminent seizure prediction if the machine could detect changes in EEG patterns. In this study, we have proposed a one -dimensional Convolutional Neural network (CNN) for the automatic detection of epilepsy seizures. The automated process might be convenient in the situations where a neurologist is unavailable and also help the neurologists in proper analysis of EEG signals and case diagnosis. We have used two publicly available EEG datasets, which were collected from the two African countries, Guinea-Bissau and Nigeria. The datasets contain EEG signals of 318 subjects. We have trained and verify the performance of our model by testing it on both the datasets and obtained the highest accuracy of 82.818%.
引用
收藏
页数:163
相关论文
共 50 条
  • [1] Epilepsy Seizure Detection Using EEG signals
    Lasefr, Zakareya
    Ayyalasomayajula, Sai Shiva V. N. R.
    Elleithy, Khaled
    [J]. 2017 IEEE 8TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (UEMCON), 2017, : 162 - 167
  • [2] An automated system for epilepsy detection using EEG brain signals based on deep learning approach
    Ullah, Ihsan
    Hussain, Muhammad
    Qazi, Emad-ul-Haq
    Aboalsamh, Hatim
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 107 : 61 - 71
  • [3] Detection of epileptic seizure in EEG signals using machine learning and deep learning techniques
    Kunekar P.
    Gupta M.K.
    Gaur P.
    [J]. Journal of Engineering and Applied Science, 2024, 71 (01):
  • [4] Epileptic Seizure Detection in EEG Signals Using Machine Learning and Deep Learning Techniques
    Kode, Hepseeba
    Elleithy, Khaled
    Almazaydeh, Laiali
    [J]. IEEE ACCESS, 2024, 12 : 80657 - 80668
  • [5] A Deep Learning Approach to EEG based Epilepsy Seizure Determination
    Cilasun, M. Husrev
    Yalcin, Hulya
    [J]. 2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1573 - 1576
  • [6] Detection of epileptic seizure using EEG signals analysis based on deep learning techniques
    Abdulwahhab, Ali H.
    Abdulaal, Alaa Hussein
    Al-Ghrairi, Assad H. Thary
    Mohammed, Ali Abdulwahhab
    Valizadeh, Morteza
    [J]. CHAOS SOLITONS & FRACTALS, 2024, 181
  • [7] Seizure Type Detection Using EEG Signals Based on Phase Synchronization and Deep Learning
    Shankar, Anand
    Chakraborty, Debaleena
    Saikia, Manob Jyoti
    Dandapat, Samarendra
    Barma, Shovan
    [J]. 2023 IEEE 19TH INTERNATIONAL CONFERENCE ON BODY SENSOR NETWORKS, BSN, 2023,
  • [8] A Deep Learning Approach for Epilepsy Seizure Identification Using Electroencephalogram Signals: A Preliminary Study
    Jacobo-Zavaleta, Sergio
    Zavaleta, Jorge
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2023, 21 (03) : 419 - 426
  • [9] An Efficient Automated Technique for Epilepsy Seizure Detection Using EEG signals
    Lasefr, Zakareya
    Ayyalasomayajula, Sai Shiva V. N. R.
    Elleithy, Khaled
    [J]. 2017 IEEE 8TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (UEMCON), 2017, : 76 - 82
  • [10] Interpreting deep learning models for epileptic seizure detection on EEG signals
    Gabeff, Valentin
    Teijeiro, Tomas
    Zapater, Marina
    Cammoun, Leila
    Rheims, Sylvain
    Ryvlin, Philippe
    Atienza, David
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 117