A deep learning approach for epilepsy seizure detection using EEG signals

被引:0
|
作者
Kaushik, Manoj [1 ]
Singh, Divyanshu [1 ]
Kishore-Dutta, Malay [1 ]
Travieso, Carlos M. [2 ]
机构
[1] Dr APJ Abdul Kalam Tech Univ, Ctr Adv Studies, Lucknow, India
[2] Univ Las Palmas Gran Canaria, IDeTIC, Signals & Commun Dept, Las Palmas Gran Canaria, Spain
来源
TECNOLOGIA EN MARCHA | 2022年 / 35卷
关键词
EEG Signal; epilepsy detection; Convolutional Neural network; pattern recognition;
D O I
10.18845/tm.v35i8.6461
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electroencephalogram (EEG) is an effective non-invasive way to detect sudden changes in neural brain activity, which generally occurs due to excessive electric discharge in the brain cells. EEG signals could be helpful in imminent seizure prediction if the machine could detect changes in EEG patterns. In this study, we have proposed a one -dimensional Convolutional Neural network (CNN) for the automatic detection of epilepsy seizures. The automated process might be convenient in the situations where a neurologist is unavailable and also help the neurologists in proper analysis of EEG signals and case diagnosis. We have used two publicly available EEG datasets, which were collected from the two African countries, Guinea-Bissau and Nigeria. The datasets contain EEG signals of 318 subjects. We have trained and verify the performance of our model by testing it on both the datasets and obtained the highest accuracy of 82.818%.
引用
收藏
页数:163
相关论文
共 50 条
  • [21] A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals
    Aslan, Zulfikar
    Akin, Mehmet
    [J]. PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2022, 45 (01) : 83 - 96
  • [22] A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals
    Zülfikar Aslan
    Mehmet Akin
    [J]. Physical and Engineering Sciences in Medicine, 2022, 45 : 83 - 96
  • [23] An intelligent epilepsy seizure detection system using adaptive mode decomposition of EEG signals
    Kumar, Gulshan
    Chander, Subhash
    Almadhor, Ahmad
    [J]. PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2022, 45 (01) : 261 - 272
  • [24] An intelligent epilepsy seizure detection system using adaptive mode decomposition of EEG signals
    Gulshan Kumar
    Subhash Chander
    Ahmad Almadhor
    [J]. Physical and Engineering Sciences in Medicine, 2022, 45 : 261 - 272
  • [25] A review on the pattern detection methods for epilepsy seizure detection from EEG signals
    Sharmila, Ashok
    Geethanjali, Purusothaman
    [J]. BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2019, 64 (05): : 507 - 517
  • [26] A Deep Transfer Learning Approach for Seizure detection using RGB features of Epileptic Electroencephalogram Signals
    Agrawal, Anupam
    Jana, Gopal Chandra
    Gupta, Prachi
    [J]. 11TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM 2019), 2019, : 367 - 373
  • [27] Feature Extraction of EEG Signals for Seizure Detection Using Machine Learning Algorthims
    Alsuwaiket, Mohammed A.
    [J]. ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2022, 12 (05) : 9247 - 9251
  • [28] Early Detection of Epilepsy using EEG signals
    Kumar, Selvin Pradeep S.
    Ajitha, L.
    [J]. 2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), 2014, : 1509 - 1514
  • [29] Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 : 270 - 278
  • [30] Deep Learning for EEG Seizure Detection in Preterm Infants
    O'Shea, Alison
    Ahmed, Rehan
    Lightbody, Gordon
    Pavlidis, Elena
    Lloyd, Rhodri
    Pisani, Francesco
    Marnane, Willian
    Mathieson, Sean
    Boylan, Geraldine
    Temko, Andriy
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (08)