EEG-based Absence Seizure Detection Methods

被引:0
|
作者
Liang, Sheng-Fu [1 ]
Chang, Wan-Lin [1 ]
Chiueh, Herming [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
[2] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu 30050, Taiwan
关键词
Epilepsy; seizure detection; EEG; feature extraction; linear and nonlinear classifiers; APPROXIMATE ENTROPY; EPILEPSY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Approximately 1 % of people in the world have epilepsy and 25% of epilepsy patients cannot be treated sufficiently by any available therapy. An automatic seizure detection system can reduce the time taken to review the EEG data by the neurologist for epilepsy diagnosis. In this paper, various EEG features integrated with the linear or non-linear classifiers are evaluated for seizure detection. For the EEG features, approximate entropy (ApEn) combined with 1) EEG power spectra or 2) autoregressive model (AR) are compared. In addition, the principle component analysis (PCA) is also utilized for feature extraction. For the classifiers, two linear models, linear least square (LLS) and linear discriminant analysis (LDA), and two nonlinear models, backpropagation neural network (BPNN) and support vector machine with radial basis function kernel (RBFSVM) are compared. The EEG signals of three Long Evans rats with spontaneous absence seizures are used for leave-one-out cross-validation. Experimental results shows that combining ApEn and multi-band EEG power spectra are superior to the combination of ApEn and AR model for all classifiers. The best average accuracy is 97.5% performed by RBFSVM and the linear models can achieve to higher than 95%. The automatic seizure detection method can be utilized to drive the seizure warning device or seizure control devices in the future to enhance the patients' quality of life.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] EEG-based seizure detection
    Baumgartner, C.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2017, 24 : 748 - 748
  • [2] Letter to the Editor: EEG-based seizure detection
    Reus, E. E. M.
    Visser, G. H.
    Cox, F. M. E.
    [J]. EPILEPSY & BEHAVIOR, 2024, 151
  • [3] Classifier models and architectures for EEG-based neonatal seizure detection
    Greene, B. R.
    Marnane, W. P.
    Lightbody, G.
    Reilly, R. B.
    Boylan, G. B.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2008, 29 (10) : 1157 - 1178
  • [4] EEG-based neonatal seizure detection with Support Vector Machines
    Temko, A.
    Thomas, E.
    Marnane, W.
    Lightbody, G.
    Boylan, G.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2011, 122 (03) : 464 - 473
  • [5] Nonlinear Dimension Reduction for EEG-Based Epileptic Seizure Detection
    Birjandtalab, J.
    Pouyan, M. Baran
    Nourani, M.
    [J]. 2016 3RD IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, 2016, : 595 - 598
  • [6] Assessment of a scalp EEG-based automated seizure detection system
    Kelly, K. M.
    Shiau, D. S.
    Kern, R. T.
    Chien, J. H.
    Yang, M. C. K.
    Yandora, K. A.
    Valeriano, J. P.
    Halford, J. J.
    Sackellares, J. C.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2010, 121 (11) : 1832 - 1843
  • [7] An Optimized EEG-Based Seizure Detection Algorithm for Implantable Devices
    Manzouri, Farrokh
    Khurana, Lakshay
    Kravalis, Kristina
    Stieglitz, Thomas
    Schulze-Bonhage, Andreas
    Duempelmann, Matthias
    [J]. 2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 995 - 998
  • [8] A realistic and patient-specific perspective on EEG-based seizure detection
    Schulze-Bonhage, Andreas
    [J]. CLINICAL NEUROPHYSIOLOGY, 2022, 138 : 191 - 192
  • [9] EEG-based epileptic seizure state detection using deep learning
    Patel, Vibha
    Bhatti, Dharmendra
    Ganatra, Amit
    Tailor, Jaishree
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2024, 44 (01) : 57 - 66
  • [10] EEG-based seizure detection in patients with intellectual disability: Which EEG and clinical factors are important?
    Wang, Lei
    Long, Xi
    Aarts, Ronald M.
    van Dijk, Johannes P.
    Arends, Johan B. A. M.
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 49 : 404 - 418