The Hamilton-Jacobi equation of minimal time control

被引:0
|
作者
Clarke, FH [1 ]
Nour, C [1 ]
机构
[1] Univ Lyon 1, Inst Girard Desaruges, F-69622 Villeurbanne, France
关键词
minimal time function; viscosity solutions; geodesic trajectories; proximal analysis; monotonicity of trajectories; nonsmooth analysis;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the solutions of the Hamilton-Jacobi equation that arise in connection with minimal time control, in a new global framework. These solutions, for which we establish existence using the minimal time function as a function of two variables, turn out to be closely related to time-geodesic trajectories.
引用
收藏
页码:413 / 436
页数:24
相关论文
共 50 条
  • [41] SEMIGROUP TREATMENT OF HAMILTON-JACOBI EQUATION
    BURCH, BC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A128 - A128
  • [42] CONDITIONS FOR SEPARATION OF HAMILTON-JACOBI EQUATION
    COLLINSON, CD
    FUGERE, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (11): : 1877 - 1885
  • [43] GEOMETRY OF THE DISCRETE HAMILTON-JACOBI EQUATION: APPLICATIONS IN OPTIMAL CONTROL
    de Leon, Manuel
    Sardon, Cristina
    REPORTS ON MATHEMATICAL PHYSICS, 2018, 81 (01) : 39 - 63
  • [44] A Hamilton-Jacobi type equation in control problems with hereditary information
    Lukoyanov, NY
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2000, 64 (02): : 243 - 253
  • [45] GENERALIZED SOLUTIONS OF THE HAMILTON-JACOBI EQUATION OF STOCHASTIC-CONTROL
    HAUSSMANN, UG
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (03) : 728 - 743
  • [46] Ergodic control of semilinear stochastic equations and the Hamilton-Jacobi equation
    Goldys, B
    Maslowski, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (02) : 592 - 631
  • [47] The Liouville equation, the hydrodynamic substitution, and the Hamilton-Jacobi equation
    Vedenyapin, V. V.
    Fimin, N. N.
    DOKLADY MATHEMATICS, 2012, 86 (02) : 697 - 699
  • [48] The Liouville equation, the hydrodynamic substitution, and the Hamilton-Jacobi equation
    V. V. Vedenyapin
    N. N. Fimin
    Doklady Mathematics, 2012, 86 : 697 - 699
  • [49] Subcritical Hamilton-Jacobi fractional equation in RN
    Dlotko, Tomasz
    Kania, Maria B.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (12) : 2547 - 2560
  • [50] On the Geometry of the Hamilton-Jacobi Equation and Generating Functions
    Ferraro, Sebastian
    De Leon, Manuel
    Carlos Marrero, Juan
    Martin De Diego, David
    Vaquero, Miguel
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 226 (01) : 243 - 302