On the Geometry of the Hamilton-Jacobi Equation and Generating Functions

被引:7
|
作者
Ferraro, Sebastian [1 ]
De Leon, Manuel [2 ]
Carlos Marrero, Juan [3 ,4 ]
Martin De Diego, David [2 ]
Vaquero, Miguel [2 ]
机构
[1] Univ Nacl Sur, CONICET, Dept Matemat, Av Alem 1253, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[2] UAM, ICMAT, Inst Ciencias Matemet, C Nicolas Cabrera 13-15, Madrid 28049, Spain
[3] ULL, CSIC, Unidad Asociada Geometria Diferencial Mecan Geome, C Astrofis Francisco Sanchez S-N, Tenerife 38206, Canary Islands, Spain
[4] ULL, Fac Ciencias, Dept Matemat Estadist & IO, C Astrofis Francisco Sanchez S-N, Tenerife 38206, Canary Islands, Spain
关键词
LIE ALGEBROID STRUCTURES; SYMPLECTIC INTEGRATION; LAGRANGIAN MECHANICS; POISSON INTEGRATORS; DYNAMICAL-SYSTEMS; AFFINE BUNDLES; REDUCTION; INTEGRABILITY; GROUPOIDS;
D O I
10.1007/s00205-017-1133-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a geometric version of the Hamilton-Jacobi equation in the Poisson setting. Specifically, we "geometrize" what is usually called a complete solution of the Hamilton-Jacobi equation. We use some well-known results about symplectic groupoids, in particular cotangent groupoids, as a keystone for the construction of our framework. Our methodology follows the ambitious program proposed by Weinstein (In Mechanics day (Waterloo, ON, 1992), volume 7 of fields institute communications, American Mathematical Society, Providence, 1996) in order to develop geometric formulations of the dynamical behavior of Lagrangian and Hamiltonian systems on Lie algebroids and Lie groupoids. This procedure allows us to take symmetries into account, and, as a by-product, we recover results from Channell and Scovel (Phys D 50(1):80-88, 1991), Ge (Indiana Univ. Math. J. 39(3):859-876, 1990), Ge and Marsden (Phys Lett A 133(3):134-139, 1988), but even in these situations our approach is new. A theory of generating functions for the Poisson structures considered here is also developed following the same pattern, solving a longstanding problem of the area: how to obtain a generating function for the identity transformation and the nearby Poisson automorphisms of Poisson manifolds. A direct application of our results gives the construction of a family of Poisson integrators, that is, integrators that conserve the underlying Poisson geometry. These integrators are implemented in the paper in benchmark problems. Some conclusions, current and future directions of research are shown at the end of the paper.
引用
收藏
页码:243 / 302
页数:60
相关论文
共 50 条
  • [1] On the Geometry of the Hamilton–Jacobi Equation and Generating Functions
    Sebastián Ferraro
    Manuel de León
    Juan Carlos Marrero
    David Martín de Diego
    Miguel Vaquero
    [J]. Archive for Rational Mechanics and Analysis, 2017, 226 : 243 - 302
  • [2] On the Hamilton-Jacobi equation in the framework of generalized functions
    Fernandez, Roseli
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) : 487 - 502
  • [3] Approximate Solutions to the Hamilton-Jacobi Equations for Generating Functions
    Zhiwei Hao
    Kenji Fujimoto
    Qiuhua Zhang
    [J]. Journal of Systems Science and Complexity, 2020, 33 : 261 - 288
  • [4] Approximate Solutions to the Hamilton-Jacobi Equations for Generating Functions
    Hao, Zhiwei
    Fujimoto, Kenji
    Zhang, Qiuhua
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (02) : 261 - 288
  • [5] Approximate Solutions to the Hamilton-Jacobi Equations for Generating Functions
    HAO Zhiwei
    FUJIMOTO Kenji
    ZHANG Qiuhua
    [J]. Journal of Systems Science & Complexity, 2020, 33 (02) : 261 - 288
  • [6] HAMILTON-JACOBI EQUATION
    ROSENBLO.PC
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1971, 43 (04) : 245 - &
  • [7] Hamilton-Jacobi approach to potential functions in information geometry
    Ciaglia, Florio M.
    Di Cosmo, Fabio
    Felice, Domenico
    Mancini, Stefano
    Marmo, Giuseppe
    Perez-Pardo, Juan M.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (06) : 063506
  • [8] GEOMETRY OF THE DISCRETE HAMILTON-JACOBI EQUATION: APPLICATIONS IN OPTIMAL CONTROL
    de Leon, Manuel
    Sardon, Cristina
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2018, 81 (01) : 39 - 63
  • [9] Resurgence in a Hamilton-Jacobi equation
    Olivé, C
    Sauzin, D
    Seara, TM
    [J]. ANNALES DE L INSTITUT FOURIER, 2003, 53 (04) : 1185 - +
  • [10] CONTINGENT HAMILTON-JACOBI EQUATION
    FRANKOWSKA, H
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (11): : 295 - 298