Posterior contraction in sparse generalized linear models

被引:6
|
作者
Jeong, Seonghyun [1 ]
Ghosal, Subhashis [2 ]
机构
[1] Yonsei Univ, Dept Stat & Data Sci, 50 Yonsei Ro, Seoul 03722, South Korea
[2] North Carolina State Univ, Dept Stat, 5109 SAS Hall,2311 Stinson Dr, Raleigh, NC 27695 USA
关键词
Fractional posterior; Generalized linear model; High-dimensional regression; Posterior contraction rate; Sparsity-inducing prior; CONVERGENCE-RATES; REGRESSION; FRAMEWORK;
D O I
10.1093/biomet/asaa074
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study posterior contraction rates in sparse high-dimensional generalized linear models using priors incorporating sparsity. A mixture of a point mass at zero and a continuous distribution is used as the prior distribution on regression coefficients. In addition to the usual posterior, the fractional posterior, which is obtained by applying Bayes theorem with a fractional power of the likelihood, is also considered. The latter allows uniformity in posterior contraction over a larger subset of the parameter space. In our set-up, the link function of the generalized linear model need not be canonical. We show that Bayesian methods achieve convergence properties analogous to lasso-type procedures. Our results can be used to derive posterior contraction rates in many generalized linear models including logistic, Poisson regression and others.
引用
收藏
页码:367 / 379
页数:13
相关论文
共 50 条
  • [31] Sparse Generalized Functional Linear Models for Predicting Treatment Resistance with Longitudinal Data
    Liu, Yashu
    Nie, Zhi
    Li, Qingqin
    Narayan, Vaibhav
    Manji, Husseini
    Ye, Jieping
    Wittenberg, Gayle
    [J]. NEUROPSYCHOPHARMACOLOGY, 2014, 39 : S440 - S441
  • [32] Generalized Sparse Learning of Linear Models Over the Complete Subgraph Feature Set
    Takigawa, Ichigaku
    Mamitsuka, Hiroshi
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (03) : 617 - 624
  • [33] Empirical Bayes inference in sparse high-dimensional generalized linear models
    Tang, Yiqi
    Martin, Ryan
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3212 - 3246
  • [34] Group linear algorithm with sparse principal decomposition: a variable selection and clustering method for generalized linear models
    Juan C. Laria
    M. Carmen Aguilera-Morillo
    Rosa E. Lillo
    [J]. Statistical Papers, 2023, 64 : 227 - 253
  • [35] Group linear algorithm with sparse principal decomposition: a variable selection and clustering method for generalized linear models
    Laria, Juan C.
    Carmen Aguilera-Morillo, M.
    Lillo, Rosa E.
    [J]. STATISTICAL PAPERS, 2023, 64 (01) : 227 - 253
  • [36] Sparse Linear Isotonic Models
    Chen, Sheng
    Banerjee, Arindam
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [37] Posterior Contraction Rates for Stochastic Block Models
    Ghosh, Prasenjit
    Pati, Debdeep
    Bhattacharya, Anirban
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2020, 82 (02): : 448 - 476
  • [38] Posterior Contraction Rates for Stochastic Block Models
    Prasenjit Ghosh
    Debdeep Pati
    Anirban Bhattacharya
    [J]. Sankhya A, 2020, 82 (2): : 448 - 476
  • [39] Generalized linear models
    Neuhaus, John
    McCulloch, Charles
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (05) : 407 - 413
  • [40] Generalized linear models
    McCulloch, CE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) : 1320 - 1324